Metamath Proof Explorer


Theorem derang0

Description: The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypothesis derang.d D=xFinf|f:x1-1 ontoxyxfyy
Assertion derang0 D=1

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 0fin Fin
3 1 derangval FinD=f|f:1-1 ontoyfyy
4 2 3 ax-mp D=f|f:1-1 ontoyfyy
5 ral0 yfyy
6 5 biantru f:1-1 ontof:1-1 ontoyfyy
7 eqid =
8 f1o00 f:1-1 ontof==
9 7 8 mpbiran2 f:1-1 ontof=
10 6 9 bitr3i f:1-1 ontoyfyyf=
11 10 abbii f|f:1-1 ontoyfyy=f|f=
12 df-sn =f|f=
13 11 12 eqtr4i f|f:1-1 ontoyfyy=
14 13 fveq2i f|f:1-1 ontoyfyy=
15 0ex V
16 hashsng V=1
17 15 16 ax-mp =1
18 4 14 17 3eqtri D=1