| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cabv |
|- AbsVal |
| 1 |
|
vr |
|- r |
| 2 |
|
crg |
|- Ring |
| 3 |
|
vf |
|- f |
| 4 |
|
cc0 |
|- 0 |
| 5 |
|
cico |
|- [,) |
| 6 |
|
cpnf |
|- +oo |
| 7 |
4 6 5
|
co |
|- ( 0 [,) +oo ) |
| 8 |
|
cmap |
|- ^m |
| 9 |
|
cbs |
|- Base |
| 10 |
1
|
cv |
|- r |
| 11 |
10 9
|
cfv |
|- ( Base ` r ) |
| 12 |
7 11 8
|
co |
|- ( ( 0 [,) +oo ) ^m ( Base ` r ) ) |
| 13 |
|
vx |
|- x |
| 14 |
3
|
cv |
|- f |
| 15 |
13
|
cv |
|- x |
| 16 |
15 14
|
cfv |
|- ( f ` x ) |
| 17 |
16 4
|
wceq |
|- ( f ` x ) = 0 |
| 18 |
|
c0g |
|- 0g |
| 19 |
10 18
|
cfv |
|- ( 0g ` r ) |
| 20 |
15 19
|
wceq |
|- x = ( 0g ` r ) |
| 21 |
17 20
|
wb |
|- ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) |
| 22 |
|
vy |
|- y |
| 23 |
|
cmulr |
|- .r |
| 24 |
10 23
|
cfv |
|- ( .r ` r ) |
| 25 |
22
|
cv |
|- y |
| 26 |
15 25 24
|
co |
|- ( x ( .r ` r ) y ) |
| 27 |
26 14
|
cfv |
|- ( f ` ( x ( .r ` r ) y ) ) |
| 28 |
|
cmul |
|- x. |
| 29 |
25 14
|
cfv |
|- ( f ` y ) |
| 30 |
16 29 28
|
co |
|- ( ( f ` x ) x. ( f ` y ) ) |
| 31 |
27 30
|
wceq |
|- ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) |
| 32 |
|
cplusg |
|- +g |
| 33 |
10 32
|
cfv |
|- ( +g ` r ) |
| 34 |
15 25 33
|
co |
|- ( x ( +g ` r ) y ) |
| 35 |
34 14
|
cfv |
|- ( f ` ( x ( +g ` r ) y ) ) |
| 36 |
|
cle |
|- <_ |
| 37 |
|
caddc |
|- + |
| 38 |
16 29 37
|
co |
|- ( ( f ` x ) + ( f ` y ) ) |
| 39 |
35 38 36
|
wbr |
|- ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) |
| 40 |
31 39
|
wa |
|- ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) |
| 41 |
40 22 11
|
wral |
|- A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) |
| 42 |
21 41
|
wa |
|- ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) |
| 43 |
42 13 11
|
wral |
|- A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) |
| 44 |
43 3 12
|
crab |
|- { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } |
| 45 |
1 2 44
|
cmpt |
|- ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } ) |
| 46 |
0 45
|
wceq |
|- AbsVal = ( r e. Ring |-> { f e. ( ( 0 [,) +oo ) ^m ( Base ` r ) ) | A. x e. ( Base ` r ) ( ( ( f ` x ) = 0 <-> x = ( 0g ` r ) ) /\ A. y e. ( Base ` r ) ( ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) x. ( f ` y ) ) /\ ( f ` ( x ( +g ` r ) y ) ) <_ ( ( f ` x ) + ( f ` y ) ) ) ) } ) |