| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cafs |
|- AFS |
| 1 |
|
vg |
|- g |
| 2 |
|
cstrkg |
|- TarskiG |
| 3 |
|
ve |
|- e |
| 4 |
|
vf |
|- f |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- g |
| 7 |
6 5
|
cfv |
|- ( Base ` g ) |
| 8 |
|
vp |
|- p |
| 9 |
|
cds |
|- dist |
| 10 |
6 9
|
cfv |
|- ( dist ` g ) |
| 11 |
|
vh |
|- h |
| 12 |
|
citv |
|- Itv |
| 13 |
6 12
|
cfv |
|- ( Itv ` g ) |
| 14 |
|
vi |
|- i |
| 15 |
|
va |
|- a |
| 16 |
8
|
cv |
|- p |
| 17 |
|
vb |
|- b |
| 18 |
|
vc |
|- c |
| 19 |
|
vd |
|- d |
| 20 |
|
vx |
|- x |
| 21 |
|
vy |
|- y |
| 22 |
|
vz |
|- z |
| 23 |
|
vw |
|- w |
| 24 |
3
|
cv |
|- e |
| 25 |
15
|
cv |
|- a |
| 26 |
17
|
cv |
|- b |
| 27 |
25 26
|
cop |
|- <. a , b >. |
| 28 |
18
|
cv |
|- c |
| 29 |
19
|
cv |
|- d |
| 30 |
28 29
|
cop |
|- <. c , d >. |
| 31 |
27 30
|
cop |
|- <. <. a , b >. , <. c , d >. >. |
| 32 |
24 31
|
wceq |
|- e = <. <. a , b >. , <. c , d >. >. |
| 33 |
4
|
cv |
|- f |
| 34 |
20
|
cv |
|- x |
| 35 |
21
|
cv |
|- y |
| 36 |
34 35
|
cop |
|- <. x , y >. |
| 37 |
22
|
cv |
|- z |
| 38 |
23
|
cv |
|- w |
| 39 |
37 38
|
cop |
|- <. z , w >. |
| 40 |
36 39
|
cop |
|- <. <. x , y >. , <. z , w >. >. |
| 41 |
33 40
|
wceq |
|- f = <. <. x , y >. , <. z , w >. >. |
| 42 |
14
|
cv |
|- i |
| 43 |
25 28 42
|
co |
|- ( a i c ) |
| 44 |
26 43
|
wcel |
|- b e. ( a i c ) |
| 45 |
34 37 42
|
co |
|- ( x i z ) |
| 46 |
35 45
|
wcel |
|- y e. ( x i z ) |
| 47 |
44 46
|
wa |
|- ( b e. ( a i c ) /\ y e. ( x i z ) ) |
| 48 |
11
|
cv |
|- h |
| 49 |
25 26 48
|
co |
|- ( a h b ) |
| 50 |
34 35 48
|
co |
|- ( x h y ) |
| 51 |
49 50
|
wceq |
|- ( a h b ) = ( x h y ) |
| 52 |
26 28 48
|
co |
|- ( b h c ) |
| 53 |
35 37 48
|
co |
|- ( y h z ) |
| 54 |
52 53
|
wceq |
|- ( b h c ) = ( y h z ) |
| 55 |
51 54
|
wa |
|- ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) |
| 56 |
25 29 48
|
co |
|- ( a h d ) |
| 57 |
34 38 48
|
co |
|- ( x h w ) |
| 58 |
56 57
|
wceq |
|- ( a h d ) = ( x h w ) |
| 59 |
26 29 48
|
co |
|- ( b h d ) |
| 60 |
35 38 48
|
co |
|- ( y h w ) |
| 61 |
59 60
|
wceq |
|- ( b h d ) = ( y h w ) |
| 62 |
58 61
|
wa |
|- ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) |
| 63 |
47 55 62
|
w3a |
|- ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) |
| 64 |
32 41 63
|
w3a |
|- ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 65 |
64 23 16
|
wrex |
|- E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 66 |
65 22 16
|
wrex |
|- E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 67 |
66 21 16
|
wrex |
|- E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 68 |
67 20 16
|
wrex |
|- E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 69 |
68 19 16
|
wrex |
|- E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 70 |
69 18 16
|
wrex |
|- E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 71 |
70 17 16
|
wrex |
|- E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 72 |
71 15 16
|
wrex |
|- E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 73 |
72 14 13
|
wsbc |
|- [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 74 |
73 11 10
|
wsbc |
|- [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 75 |
74 8 7
|
wsbc |
|- [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
| 76 |
75 3 4
|
copab |
|- { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } |
| 77 |
1 2 76
|
cmpt |
|- ( g e. TarskiG |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } ) |
| 78 |
0 77
|
wceq |
|- AFS = ( g e. TarskiG |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } ) |