Step |
Hyp |
Ref |
Expression |
0 |
|
cafs |
|- AFS |
1 |
|
vg |
|- g |
2 |
|
cstrkg |
|- TarskiG |
3 |
|
ve |
|- e |
4 |
|
vf |
|- f |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- g |
7 |
6 5
|
cfv |
|- ( Base ` g ) |
8 |
|
vp |
|- p |
9 |
|
cds |
|- dist |
10 |
6 9
|
cfv |
|- ( dist ` g ) |
11 |
|
vh |
|- h |
12 |
|
citv |
|- Itv |
13 |
6 12
|
cfv |
|- ( Itv ` g ) |
14 |
|
vi |
|- i |
15 |
|
va |
|- a |
16 |
8
|
cv |
|- p |
17 |
|
vb |
|- b |
18 |
|
vc |
|- c |
19 |
|
vd |
|- d |
20 |
|
vx |
|- x |
21 |
|
vy |
|- y |
22 |
|
vz |
|- z |
23 |
|
vw |
|- w |
24 |
3
|
cv |
|- e |
25 |
15
|
cv |
|- a |
26 |
17
|
cv |
|- b |
27 |
25 26
|
cop |
|- <. a , b >. |
28 |
18
|
cv |
|- c |
29 |
19
|
cv |
|- d |
30 |
28 29
|
cop |
|- <. c , d >. |
31 |
27 30
|
cop |
|- <. <. a , b >. , <. c , d >. >. |
32 |
24 31
|
wceq |
|- e = <. <. a , b >. , <. c , d >. >. |
33 |
4
|
cv |
|- f |
34 |
20
|
cv |
|- x |
35 |
21
|
cv |
|- y |
36 |
34 35
|
cop |
|- <. x , y >. |
37 |
22
|
cv |
|- z |
38 |
23
|
cv |
|- w |
39 |
37 38
|
cop |
|- <. z , w >. |
40 |
36 39
|
cop |
|- <. <. x , y >. , <. z , w >. >. |
41 |
33 40
|
wceq |
|- f = <. <. x , y >. , <. z , w >. >. |
42 |
14
|
cv |
|- i |
43 |
25 28 42
|
co |
|- ( a i c ) |
44 |
26 43
|
wcel |
|- b e. ( a i c ) |
45 |
34 37 42
|
co |
|- ( x i z ) |
46 |
35 45
|
wcel |
|- y e. ( x i z ) |
47 |
44 46
|
wa |
|- ( b e. ( a i c ) /\ y e. ( x i z ) ) |
48 |
11
|
cv |
|- h |
49 |
25 26 48
|
co |
|- ( a h b ) |
50 |
34 35 48
|
co |
|- ( x h y ) |
51 |
49 50
|
wceq |
|- ( a h b ) = ( x h y ) |
52 |
26 28 48
|
co |
|- ( b h c ) |
53 |
35 37 48
|
co |
|- ( y h z ) |
54 |
52 53
|
wceq |
|- ( b h c ) = ( y h z ) |
55 |
51 54
|
wa |
|- ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) |
56 |
25 29 48
|
co |
|- ( a h d ) |
57 |
34 38 48
|
co |
|- ( x h w ) |
58 |
56 57
|
wceq |
|- ( a h d ) = ( x h w ) |
59 |
26 29 48
|
co |
|- ( b h d ) |
60 |
35 38 48
|
co |
|- ( y h w ) |
61 |
59 60
|
wceq |
|- ( b h d ) = ( y h w ) |
62 |
58 61
|
wa |
|- ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) |
63 |
47 55 62
|
w3a |
|- ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) |
64 |
32 41 63
|
w3a |
|- ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
65 |
64 23 16
|
wrex |
|- E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
66 |
65 22 16
|
wrex |
|- E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
67 |
66 21 16
|
wrex |
|- E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
68 |
67 20 16
|
wrex |
|- E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
69 |
68 19 16
|
wrex |
|- E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
70 |
69 18 16
|
wrex |
|- E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
71 |
70 17 16
|
wrex |
|- E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
72 |
71 15 16
|
wrex |
|- E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
73 |
72 14 13
|
wsbc |
|- [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
74 |
73 11 10
|
wsbc |
|- [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
75 |
74 8 7
|
wsbc |
|- [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) |
76 |
75 3 4
|
copab |
|- { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } |
77 |
1 2 76
|
cmpt |
|- ( g e. TarskiG |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } ) |
78 |
0 77
|
wceq |
|- AFS = ( g e. TarskiG |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } ) |