| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cafs |  |-  AFS | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cstrkg |  |-  TarskiG | 
						
							| 3 |  | ve |  |-  e | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 |  | cbs |  |-  Base | 
						
							| 6 | 1 | cv |  |-  g | 
						
							| 7 | 6 5 | cfv |  |-  ( Base ` g ) | 
						
							| 8 |  | vp |  |-  p | 
						
							| 9 |  | cds |  |-  dist | 
						
							| 10 | 6 9 | cfv |  |-  ( dist ` g ) | 
						
							| 11 |  | vh |  |-  h | 
						
							| 12 |  | citv |  |-  Itv | 
						
							| 13 | 6 12 | cfv |  |-  ( Itv ` g ) | 
						
							| 14 |  | vi |  |-  i | 
						
							| 15 |  | va |  |-  a | 
						
							| 16 | 8 | cv |  |-  p | 
						
							| 17 |  | vb |  |-  b | 
						
							| 18 |  | vc |  |-  c | 
						
							| 19 |  | vd |  |-  d | 
						
							| 20 |  | vx |  |-  x | 
						
							| 21 |  | vy |  |-  y | 
						
							| 22 |  | vz |  |-  z | 
						
							| 23 |  | vw |  |-  w | 
						
							| 24 | 3 | cv |  |-  e | 
						
							| 25 | 15 | cv |  |-  a | 
						
							| 26 | 17 | cv |  |-  b | 
						
							| 27 | 25 26 | cop |  |-  <. a , b >. | 
						
							| 28 | 18 | cv |  |-  c | 
						
							| 29 | 19 | cv |  |-  d | 
						
							| 30 | 28 29 | cop |  |-  <. c , d >. | 
						
							| 31 | 27 30 | cop |  |-  <. <. a , b >. , <. c , d >. >. | 
						
							| 32 | 24 31 | wceq |  |-  e = <. <. a , b >. , <. c , d >. >. | 
						
							| 33 | 4 | cv |  |-  f | 
						
							| 34 | 20 | cv |  |-  x | 
						
							| 35 | 21 | cv |  |-  y | 
						
							| 36 | 34 35 | cop |  |-  <. x , y >. | 
						
							| 37 | 22 | cv |  |-  z | 
						
							| 38 | 23 | cv |  |-  w | 
						
							| 39 | 37 38 | cop |  |-  <. z , w >. | 
						
							| 40 | 36 39 | cop |  |-  <. <. x , y >. , <. z , w >. >. | 
						
							| 41 | 33 40 | wceq |  |-  f = <. <. x , y >. , <. z , w >. >. | 
						
							| 42 | 14 | cv |  |-  i | 
						
							| 43 | 25 28 42 | co |  |-  ( a i c ) | 
						
							| 44 | 26 43 | wcel |  |-  b e. ( a i c ) | 
						
							| 45 | 34 37 42 | co |  |-  ( x i z ) | 
						
							| 46 | 35 45 | wcel |  |-  y e. ( x i z ) | 
						
							| 47 | 44 46 | wa |  |-  ( b e. ( a i c ) /\ y e. ( x i z ) ) | 
						
							| 48 | 11 | cv |  |-  h | 
						
							| 49 | 25 26 48 | co |  |-  ( a h b ) | 
						
							| 50 | 34 35 48 | co |  |-  ( x h y ) | 
						
							| 51 | 49 50 | wceq |  |-  ( a h b ) = ( x h y ) | 
						
							| 52 | 26 28 48 | co |  |-  ( b h c ) | 
						
							| 53 | 35 37 48 | co |  |-  ( y h z ) | 
						
							| 54 | 52 53 | wceq |  |-  ( b h c ) = ( y h z ) | 
						
							| 55 | 51 54 | wa |  |-  ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) | 
						
							| 56 | 25 29 48 | co |  |-  ( a h d ) | 
						
							| 57 | 34 38 48 | co |  |-  ( x h w ) | 
						
							| 58 | 56 57 | wceq |  |-  ( a h d ) = ( x h w ) | 
						
							| 59 | 26 29 48 | co |  |-  ( b h d ) | 
						
							| 60 | 35 38 48 | co |  |-  ( y h w ) | 
						
							| 61 | 59 60 | wceq |  |-  ( b h d ) = ( y h w ) | 
						
							| 62 | 58 61 | wa |  |-  ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) | 
						
							| 63 | 47 55 62 | w3a |  |-  ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) | 
						
							| 64 | 32 41 63 | w3a |  |-  ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 65 | 64 23 16 | wrex |  |-  E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 66 | 65 22 16 | wrex |  |-  E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 67 | 66 21 16 | wrex |  |-  E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 68 | 67 20 16 | wrex |  |-  E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 69 | 68 19 16 | wrex |  |-  E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 70 | 69 18 16 | wrex |  |-  E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 71 | 70 17 16 | wrex |  |-  E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 72 | 71 15 16 | wrex |  |-  E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 73 | 72 14 13 | wsbc |  |-  [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 74 | 73 11 10 | wsbc |  |-  [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 75 | 74 8 7 | wsbc |  |-  [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) | 
						
							| 76 | 75 3 4 | copab |  |-  { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } | 
						
							| 77 | 1 2 76 | cmpt |  |-  ( g e. TarskiG |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } ) | 
						
							| 78 | 0 77 | wceq |  |-  AFS = ( g e. TarskiG |-> { <. e , f >. | [. ( Base ` g ) / p ]. [. ( dist ` g ) / h ]. [. ( Itv ` g ) / i ]. E. a e. p E. b e. p E. c e. p E. d e. p E. x e. p E. y e. p E. z e. p E. w e. p ( e = <. <. a , b >. , <. c , d >. >. /\ f = <. <. x , y >. , <. z , w >. >. /\ ( ( b e. ( a i c ) /\ y e. ( x i z ) ) /\ ( ( a h b ) = ( x h y ) /\ ( b h c ) = ( y h z ) ) /\ ( ( a h d ) = ( x h w ) /\ ( b h d ) = ( y h w ) ) ) ) } ) |