Metamath Proof Explorer


Definition df-afs

Description: The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom ( axtg5seg ). See df-ofs . Definition 2.10 of Schwabhauser p. 28. (Contributed by Scott Fenton, 21-Sep-2013) (Revised by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Assertion df-afs AFS = g 𝒢 Tarski e f | [˙Base g / p]˙ [˙ dist g / h]˙ [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cafs class AFS
1 vg setvar g
2 cstrkg class 𝒢 Tarski
3 ve setvar e
4 vf setvar f
5 cbs class Base
6 1 cv setvar g
7 6 5 cfv class Base g
8 vp setvar p
9 cds class dist
10 6 9 cfv class dist g
11 vh setvar h
12 citv class Itv
13 6 12 cfv class Itv g
14 vi setvar i
15 va setvar a
16 8 cv setvar p
17 vb setvar b
18 vc setvar c
19 vd setvar d
20 vx setvar x
21 vy setvar y
22 vz setvar z
23 vw setvar w
24 3 cv setvar e
25 15 cv setvar a
26 17 cv setvar b
27 25 26 cop class a b
28 18 cv setvar c
29 19 cv setvar d
30 28 29 cop class c d
31 27 30 cop class a b c d
32 24 31 wceq wff e = a b c d
33 4 cv setvar f
34 20 cv setvar x
35 21 cv setvar y
36 34 35 cop class x y
37 22 cv setvar z
38 23 cv setvar w
39 37 38 cop class z w
40 36 39 cop class x y z w
41 33 40 wceq wff f = x y z w
42 14 cv setvar i
43 25 28 42 co class a i c
44 26 43 wcel wff b a i c
45 34 37 42 co class x i z
46 35 45 wcel wff y x i z
47 44 46 wa wff b a i c y x i z
48 11 cv setvar h
49 25 26 48 co class a h b
50 34 35 48 co class x h y
51 49 50 wceq wff a h b = x h y
52 26 28 48 co class b h c
53 35 37 48 co class y h z
54 52 53 wceq wff b h c = y h z
55 51 54 wa wff a h b = x h y b h c = y h z
56 25 29 48 co class a h d
57 34 38 48 co class x h w
58 56 57 wceq wff a h d = x h w
59 26 29 48 co class b h d
60 35 38 48 co class y h w
61 59 60 wceq wff b h d = y h w
62 58 61 wa wff a h d = x h w b h d = y h w
63 47 55 62 w3a wff b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
64 32 41 63 w3a wff e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
65 64 23 16 wrex wff w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
66 65 22 16 wrex wff z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
67 66 21 16 wrex wff y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
68 67 20 16 wrex wff x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
69 68 19 16 wrex wff d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
70 69 18 16 wrex wff c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
71 70 17 16 wrex wff b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
72 71 15 16 wrex wff a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
73 72 14 13 wsbc wff [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
74 73 11 10 wsbc wff [˙ dist g / h]˙ [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
75 74 8 7 wsbc wff [˙Base g / p]˙ [˙ dist g / h]˙ [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
76 75 3 4 copab class e f | [˙Base g / p]˙ [˙ dist g / h]˙ [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
77 1 2 76 cmpt class g 𝒢 Tarski e f | [˙Base g / p]˙ [˙ dist g / h]˙ [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w
78 0 77 wceq wff AFS = g 𝒢 Tarski e f | [˙Base g / p]˙ [˙ dist g / h]˙ [˙ Itv g / i]˙ a p b p c p d p x p y p z p w p e = a b c d f = x y z w b a i c y x i z a h b = x h y b h c = y h z a h d = x h w b h d = y h w