Metamath Proof Explorer


Theorem afsval

Description: Value of the AFS relation for a given geometry structure. (Contributed by Thierry Arnoux, 20-Mar-2019)

Ref Expression
Hypotheses brafs.p P=BaseG
brafs.d -˙=distG
brafs.i I=ItvG
brafs.g φG𝒢Tarski
Assertion afsval φAFSG=ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w

Proof

Step Hyp Ref Expression
1 brafs.p P=BaseG
2 brafs.d -˙=distG
3 brafs.i I=ItvG
4 brafs.g φG𝒢Tarski
5 df-afs AFS=g𝒢Tarskief|[˙Baseg/p]˙[˙distg/h]˙[˙Itvg/i]˙apbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
6 5 a1i φAFS=g𝒢Tarskief|[˙Baseg/p]˙[˙distg/h]˙[˙Itvg/i]˙apbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
7 simp1 p=Ph=-˙i=Ip=P
8 7 eqcomd p=Ph=-˙i=IP=p
9 8 adantr p=Ph=-˙i=IaPP=p
10 9 adantr p=Ph=-˙i=IaPbPP=p
11 10 adantr p=Ph=-˙i=IaPbPcPP=p
12 11 adantr p=Ph=-˙i=IaPbPcPdPP=p
13 12 adantr p=Ph=-˙i=IaPbPcPdPxPP=p
14 13 adantr p=Ph=-˙i=IaPbPcPdPxPyPP=p
15 8 ad7antr p=Ph=-˙i=IaPbPcPdPxPyPzPP=p
16 simp3 p=Ph=-˙i=Ii=I
17 16 ad8antr p=Ph=-˙i=IaPbPcPdPxPyPzPwPi=I
18 17 eqcomd p=Ph=-˙i=IaPbPcPdPxPyPzPwPI=i
19 18 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPaIc=aic
20 19 eleq2d p=Ph=-˙i=IaPbPcPdPxPyPzPwPbaIcbaic
21 18 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPxIz=xiz
22 21 eleq2d p=Ph=-˙i=IaPbPcPdPxPyPzPwPyxIzyxiz
23 20 22 anbi12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPbaIcyxIzbaicyxiz
24 simp2 p=Ph=-˙i=Ih=-˙
25 24 eqcomd p=Ph=-˙i=I-˙=h
26 25 ad8antr p=Ph=-˙i=IaPbPcPdPxPyPzPwP-˙=h
27 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPa-˙b=ahb
28 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPx-˙y=xhy
29 27 28 eqeq12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPa-˙b=x-˙yahb=xhy
30 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPb-˙c=bhc
31 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPy-˙z=yhz
32 30 31 eqeq12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPb-˙c=y-˙zbhc=yhz
33 29 32 anbi12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPa-˙b=x-˙yb-˙c=y-˙zahb=xhybhc=yhz
34 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPa-˙d=ahd
35 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPx-˙w=xhw
36 34 35 eqeq12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPa-˙d=x-˙wahd=xhw
37 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPb-˙d=bhd
38 26 oveqd p=Ph=-˙i=IaPbPcPdPxPyPzPwPy-˙w=yhw
39 37 38 eqeq12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPb-˙d=y-˙wbhd=yhw
40 36 39 anbi12d p=Ph=-˙i=IaPbPcPdPxPyPzPwPa-˙d=x-˙wb-˙d=y-˙wahd=xhwbhd=yhw
41 23 33 40 3anbi123d p=Ph=-˙i=IaPbPcPdPxPyPzPwPbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
42 41 3anbi3d p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙we=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
43 15 42 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
44 14 43 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
45 13 44 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
46 12 45 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
47 11 46 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
48 10 47 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
49 9 48 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
50 8 49 rexeqbidva p=Ph=-˙i=IaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wapbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw
51 1 2 3 50 sbcie3s g=G[˙Baseg/p]˙[˙distg/h]˙[˙Itvg/i]˙apbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhwaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w
52 51 adantl φg=G[˙Baseg/p]˙[˙distg/h]˙[˙Itvg/i]˙apbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhwaPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w
53 52 opabbidv φg=Gef|[˙Baseg/p]˙[˙distg/h]˙[˙Itvg/i]˙apbpcpdpxpypzpwpe=abcdf=xyzwbaicyxizahb=xhybhc=yhzahd=xhwbhd=yhw=ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w
54 df-xp P×P×P×P×P×P×P×P=ef|eP×P×P×PfP×P×P×P
55 1 fvexi PV
56 55 55 xpex P×PV
57 56 56 xpex P×P×P×PV
58 57 57 xpex P×P×P×P×P×P×P×PV
59 54 58 eqeltrri ef|eP×P×P×PfP×P×P×PV
60 3simpa e=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙we=abcdf=xyzw
61 60 reximi wPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wwPe=abcdf=xyzw
62 61 reximi zPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wzPwPe=abcdf=xyzw
63 62 reximi yPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wyPzPwPe=abcdf=xyzw
64 63 reximi xPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wxPyPzPwPe=abcdf=xyzw
65 64 reximi dPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wdPxPyPzPwPe=abcdf=xyzw
66 65 reximi cPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wcPdPxPyPzPwPe=abcdf=xyzw
67 66 reximi bPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wbPcPdPxPyPzPwPe=abcdf=xyzw
68 67 reximi aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙waPbPcPdPxPyPzPwPe=abcdf=xyzw
69 simpr aPbPcPdPxPyPzPwPe=abcde=abcd
70 opelxpi aPbPabP×P
71 70 ad7antr aPbPcPdPxPyPzPwPe=abcdabP×P
72 simp-7r aPbPcPdPxPyPzPwPe=abcdcP
73 simp-6r aPbPcPdPxPyPzPwPe=abcddP
74 opelxpi cPdPcdP×P
75 72 73 74 syl2anc aPbPcPdPxPyPzPwPe=abcdcdP×P
76 opelxpi abP×PcdP×PabcdP×P×P×P
77 71 75 76 syl2anc aPbPcPdPxPyPzPwPe=abcdabcdP×P×P×P
78 69 77 eqeltrd aPbPcPdPxPyPzPwPe=abcdeP×P×P×P
79 simpr aPbPcPdPxPyPzPwPf=xyzwf=xyzw
80 simp-5r aPbPcPdPxPyPzPwPf=xyzwxP
81 simp-4r aPbPcPdPxPyPzPwPf=xyzwyP
82 opelxpi xPyPxyP×P
83 80 81 82 syl2anc aPbPcPdPxPyPzPwPf=xyzwxyP×P
84 simpllr aPbPcPdPxPyPzPwPf=xyzwzP
85 simplr aPbPcPdPxPyPzPwPf=xyzwwP
86 opelxpi zPwPzwP×P
87 84 85 86 syl2anc aPbPcPdPxPyPzPwPf=xyzwzwP×P
88 opelxpi xyP×PzwP×PxyzwP×P×P×P
89 83 87 88 syl2anc aPbPcPdPxPyPzPwPf=xyzwxyzwP×P×P×P
90 79 89 eqeltrd aPbPcPdPxPyPzPwPf=xyzwfP×P×P×P
91 78 90 anim12dan aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
92 91 rexlimdva2 aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
93 92 rexlimdva aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
94 93 rexlimdva aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
95 94 rexlimdva aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
96 95 rexlimdva aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
97 96 rexlimdva aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
98 97 rexlimivv aPbPcPdPxPyPzPwPe=abcdf=xyzweP×P×P×PfP×P×P×P
99 68 98 syl aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙weP×P×P×PfP×P×P×P
100 99 ssopab2i ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wef|eP×P×P×PfP×P×P×P
101 59 100 ssexi ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wV
102 101 a1i φef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wV
103 6 53 4 102 fvmptd φAFSG=ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w