Metamath Proof Explorer


Theorem brafs

Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013)

Ref Expression
Hypotheses brafs.p P=BaseG
brafs.d -˙=distG
brafs.i I=ItvG
brafs.g φG𝒢Tarski
brafs.o O=AFSG
brafs.1 φAP
brafs.2 φBP
brafs.3 φCP
brafs.4 φDP
brafs.5 φXP
brafs.6 φYP
brafs.7 φZP
brafs.8 φWP
Assertion brafs φABCDOXYZWBAICYXIZA-˙B=X-˙YB-˙C=Y-˙ZA-˙D=X-˙WB-˙D=Y-˙W

Proof

Step Hyp Ref Expression
1 brafs.p P=BaseG
2 brafs.d -˙=distG
3 brafs.i I=ItvG
4 brafs.g φG𝒢Tarski
5 brafs.o O=AFSG
6 brafs.1 φAP
7 brafs.2 φBP
8 brafs.3 φCP
9 brafs.4 φDP
10 brafs.5 φXP
11 brafs.6 φYP
12 brafs.7 φZP
13 brafs.8 φWP
14 oveq1 a=AaIc=AIc
15 14 eleq2d a=AbaIcbAIc
16 15 anbi1d a=AbaIcyxIzbAIcyxIz
17 oveq1 a=Aa-˙b=A-˙b
18 17 eqeq1d a=Aa-˙b=x-˙yA-˙b=x-˙y
19 18 anbi1d a=Aa-˙b=x-˙yb-˙c=y-˙zA-˙b=x-˙yb-˙c=y-˙z
20 oveq1 a=Aa-˙d=A-˙d
21 20 eqeq1d a=Aa-˙d=x-˙wA-˙d=x-˙w
22 21 anbi1d a=Aa-˙d=x-˙wb-˙d=y-˙wA-˙d=x-˙wb-˙d=y-˙w
23 16 19 22 3anbi123d a=AbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙wbAIcyxIzA-˙b=x-˙yb-˙c=y-˙zA-˙d=x-˙wb-˙d=y-˙w
24 eleq1 b=BbAIcBAIc
25 24 anbi1d b=BbAIcyxIzBAIcyxIz
26 oveq2 b=BA-˙b=A-˙B
27 26 eqeq1d b=BA-˙b=x-˙yA-˙B=x-˙y
28 oveq1 b=Bb-˙c=B-˙c
29 28 eqeq1d b=Bb-˙c=y-˙zB-˙c=y-˙z
30 27 29 anbi12d b=BA-˙b=x-˙yb-˙c=y-˙zA-˙B=x-˙yB-˙c=y-˙z
31 oveq1 b=Bb-˙d=B-˙d
32 31 eqeq1d b=Bb-˙d=y-˙wB-˙d=y-˙w
33 32 anbi2d b=BA-˙d=x-˙wb-˙d=y-˙wA-˙d=x-˙wB-˙d=y-˙w
34 25 30 33 3anbi123d b=BbAIcyxIzA-˙b=x-˙yb-˙c=y-˙zA-˙d=x-˙wb-˙d=y-˙wBAIcyxIzA-˙B=x-˙yB-˙c=y-˙zA-˙d=x-˙wB-˙d=y-˙w
35 oveq2 c=CAIc=AIC
36 35 eleq2d c=CBAIcBAIC
37 36 anbi1d c=CBAIcyxIzBAICyxIz
38 oveq2 c=CB-˙c=B-˙C
39 38 eqeq1d c=CB-˙c=y-˙zB-˙C=y-˙z
40 39 anbi2d c=CA-˙B=x-˙yB-˙c=y-˙zA-˙B=x-˙yB-˙C=y-˙z
41 37 40 3anbi12d c=CBAIcyxIzA-˙B=x-˙yB-˙c=y-˙zA-˙d=x-˙wB-˙d=y-˙wBAICyxIzA-˙B=x-˙yB-˙C=y-˙zA-˙d=x-˙wB-˙d=y-˙w
42 oveq2 d=DA-˙d=A-˙D
43 42 eqeq1d d=DA-˙d=x-˙wA-˙D=x-˙w
44 oveq2 d=DB-˙d=B-˙D
45 44 eqeq1d d=DB-˙d=y-˙wB-˙D=y-˙w
46 43 45 anbi12d d=DA-˙d=x-˙wB-˙d=y-˙wA-˙D=x-˙wB-˙D=y-˙w
47 46 3anbi3d d=DBAICyxIzA-˙B=x-˙yB-˙C=y-˙zA-˙d=x-˙wB-˙d=y-˙wBAICyxIzA-˙B=x-˙yB-˙C=y-˙zA-˙D=x-˙wB-˙D=y-˙w
48 oveq1 x=XxIz=XIz
49 48 eleq2d x=XyxIzyXIz
50 49 anbi2d x=XBAICyxIzBAICyXIz
51 oveq1 x=Xx-˙y=X-˙y
52 51 eqeq2d x=XA-˙B=x-˙yA-˙B=X-˙y
53 52 anbi1d x=XA-˙B=x-˙yB-˙C=y-˙zA-˙B=X-˙yB-˙C=y-˙z
54 oveq1 x=Xx-˙w=X-˙w
55 54 eqeq2d x=XA-˙D=x-˙wA-˙D=X-˙w
56 55 anbi1d x=XA-˙D=x-˙wB-˙D=y-˙wA-˙D=X-˙wB-˙D=y-˙w
57 50 53 56 3anbi123d x=XBAICyxIzA-˙B=x-˙yB-˙C=y-˙zA-˙D=x-˙wB-˙D=y-˙wBAICyXIzA-˙B=X-˙yB-˙C=y-˙zA-˙D=X-˙wB-˙D=y-˙w
58 eleq1 y=YyXIzYXIz
59 58 anbi2d y=YBAICyXIzBAICYXIz
60 oveq2 y=YX-˙y=X-˙Y
61 60 eqeq2d y=YA-˙B=X-˙yA-˙B=X-˙Y
62 oveq1 y=Yy-˙z=Y-˙z
63 62 eqeq2d y=YB-˙C=y-˙zB-˙C=Y-˙z
64 61 63 anbi12d y=YA-˙B=X-˙yB-˙C=y-˙zA-˙B=X-˙YB-˙C=Y-˙z
65 oveq1 y=Yy-˙w=Y-˙w
66 65 eqeq2d y=YB-˙D=y-˙wB-˙D=Y-˙w
67 66 anbi2d y=YA-˙D=X-˙wB-˙D=y-˙wA-˙D=X-˙wB-˙D=Y-˙w
68 59 64 67 3anbi123d y=YBAICyXIzA-˙B=X-˙yB-˙C=y-˙zA-˙D=X-˙wB-˙D=y-˙wBAICYXIzA-˙B=X-˙YB-˙C=Y-˙zA-˙D=X-˙wB-˙D=Y-˙w
69 oveq2 z=ZXIz=XIZ
70 69 eleq2d z=ZYXIzYXIZ
71 70 anbi2d z=ZBAICYXIzBAICYXIZ
72 oveq2 z=ZY-˙z=Y-˙Z
73 72 eqeq2d z=ZB-˙C=Y-˙zB-˙C=Y-˙Z
74 73 anbi2d z=ZA-˙B=X-˙YB-˙C=Y-˙zA-˙B=X-˙YB-˙C=Y-˙Z
75 71 74 3anbi12d z=ZBAICYXIzA-˙B=X-˙YB-˙C=Y-˙zA-˙D=X-˙wB-˙D=Y-˙wBAICYXIZA-˙B=X-˙YB-˙C=Y-˙ZA-˙D=X-˙wB-˙D=Y-˙w
76 oveq2 w=WX-˙w=X-˙W
77 76 eqeq2d w=WA-˙D=X-˙wA-˙D=X-˙W
78 oveq2 w=WY-˙w=Y-˙W
79 78 eqeq2d w=WB-˙D=Y-˙wB-˙D=Y-˙W
80 77 79 anbi12d w=WA-˙D=X-˙wB-˙D=Y-˙wA-˙D=X-˙WB-˙D=Y-˙W
81 80 3anbi3d w=WBAICYXIZA-˙B=X-˙YB-˙C=Y-˙ZA-˙D=X-˙wB-˙D=Y-˙wBAICYXIZA-˙B=X-˙YB-˙C=Y-˙ZA-˙D=X-˙WB-˙D=Y-˙W
82 1 2 3 4 afsval φAFSG=ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w
83 5 82 eqtrid φO=ef|aPbPcPdPxPyPzPwPe=abcdf=xyzwbaIcyxIza-˙b=x-˙yb-˙c=y-˙za-˙d=x-˙wb-˙d=y-˙w
84 23 34 41 47 57 68 75 81 83 6 7 8 9 10 11 12 13 br8d φABCDOXYZWBAICYXIZA-˙B=X-˙YB-˙C=Y-˙ZA-˙D=X-˙WB-˙D=Y-˙W