Metamath Proof Explorer


Theorem brafs

Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013)

Ref Expression
Hypotheses brafs.p 𝑃 = ( Base ‘ 𝐺 )
brafs.d = ( dist ‘ 𝐺 )
brafs.i 𝐼 = ( Itv ‘ 𝐺 )
brafs.g ( 𝜑𝐺 ∈ TarskiG )
brafs.o 𝑂 = ( AFS ‘ 𝐺 )
brafs.1 ( 𝜑𝐴𝑃 )
brafs.2 ( 𝜑𝐵𝑃 )
brafs.3 ( 𝜑𝐶𝑃 )
brafs.4 ( 𝜑𝐷𝑃 )
brafs.5 ( 𝜑𝑋𝑃 )
brafs.6 ( 𝜑𝑌𝑃 )
brafs.7 ( 𝜑𝑍𝑃 )
brafs.8 ( 𝜑𝑊𝑃 )
Assertion brafs ( 𝜑 → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ 𝑂 ⟨ ⟨ 𝑋 , 𝑌 ⟩ , ⟨ 𝑍 , 𝑊 ⟩ ⟩ ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑊 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑊 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 brafs.p 𝑃 = ( Base ‘ 𝐺 )
2 brafs.d = ( dist ‘ 𝐺 )
3 brafs.i 𝐼 = ( Itv ‘ 𝐺 )
4 brafs.g ( 𝜑𝐺 ∈ TarskiG )
5 brafs.o 𝑂 = ( AFS ‘ 𝐺 )
6 brafs.1 ( 𝜑𝐴𝑃 )
7 brafs.2 ( 𝜑𝐵𝑃 )
8 brafs.3 ( 𝜑𝐶𝑃 )
9 brafs.4 ( 𝜑𝐷𝑃 )
10 brafs.5 ( 𝜑𝑋𝑃 )
11 brafs.6 ( 𝜑𝑌𝑃 )
12 brafs.7 ( 𝜑𝑍𝑃 )
13 brafs.8 ( 𝜑𝑊𝑃 )
14 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 𝐼 𝑐 ) = ( 𝐴 𝐼 𝑐 ) )
15 14 eleq2d ( 𝑎 = 𝐴 → ( 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ↔ 𝑏 ∈ ( 𝐴 𝐼 𝑐 ) ) )
16 15 anbi1d ( 𝑎 = 𝐴 → ( ( 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑏 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) )
17 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 𝑏 ) = ( 𝐴 𝑏 ) )
18 17 eqeq1d ( 𝑎 = 𝐴 → ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ↔ ( 𝐴 𝑏 ) = ( 𝑥 𝑦 ) ) )
19 18 anbi1d ( 𝑎 = 𝐴 → ( ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ↔ ( ( 𝐴 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ) )
20 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 𝑑 ) = ( 𝐴 𝑑 ) )
21 20 eqeq1d ( 𝑎 = 𝐴 → ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ↔ ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ) )
22 21 anbi1d ( 𝑎 = 𝐴 → ( ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ↔ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
23 16 19 22 3anbi123d ( 𝑎 = 𝐴 → ( ( ( 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ↔ ( ( 𝑏 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) )
24 eleq1 ( 𝑏 = 𝐵 → ( 𝑏 ∈ ( 𝐴 𝐼 𝑐 ) ↔ 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ) )
25 24 anbi1d ( 𝑏 = 𝐵 → ( ( 𝑏 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) )
26 oveq2 ( 𝑏 = 𝐵 → ( 𝐴 𝑏 ) = ( 𝐴 𝐵 ) )
27 26 eqeq1d ( 𝑏 = 𝐵 → ( ( 𝐴 𝑏 ) = ( 𝑥 𝑦 ) ↔ ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ) )
28 oveq1 ( 𝑏 = 𝐵 → ( 𝑏 𝑐 ) = ( 𝐵 𝑐 ) )
29 28 eqeq1d ( 𝑏 = 𝐵 → ( ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ↔ ( 𝐵 𝑐 ) = ( 𝑦 𝑧 ) ) )
30 27 29 anbi12d ( 𝑏 = 𝐵 → ( ( ( 𝐴 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ↔ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝑐 ) = ( 𝑦 𝑧 ) ) ) )
31 oveq1 ( 𝑏 = 𝐵 → ( 𝑏 𝑑 ) = ( 𝐵 𝑑 ) )
32 31 eqeq1d ( 𝑏 = 𝐵 → ( ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ↔ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) )
33 32 anbi2d ( 𝑏 = 𝐵 → ( ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ↔ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
34 25 30 33 3anbi123d ( 𝑏 = 𝐵 → ( ( ( 𝑏 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) )
35 oveq2 ( 𝑐 = 𝐶 → ( 𝐴 𝐼 𝑐 ) = ( 𝐴 𝐼 𝐶 ) )
36 35 eleq2d ( 𝑐 = 𝐶 → ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ↔ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) )
37 36 anbi1d ( 𝑐 = 𝐶 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) )
38 oveq2 ( 𝑐 = 𝐶 → ( 𝐵 𝑐 ) = ( 𝐵 𝐶 ) )
39 38 eqeq1d ( 𝑐 = 𝐶 → ( ( 𝐵 𝑐 ) = ( 𝑦 𝑧 ) ↔ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) )
40 39 anbi2d ( 𝑐 = 𝐶 → ( ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝑐 ) = ( 𝑦 𝑧 ) ) ↔ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ) )
41 37 40 3anbi12d ( 𝑐 = 𝐶 → ( ( ( 𝐵 ∈ ( 𝐴 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) )
42 oveq2 ( 𝑑 = 𝐷 → ( 𝐴 𝑑 ) = ( 𝐴 𝐷 ) )
43 42 eqeq1d ( 𝑑 = 𝐷 → ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ↔ ( 𝐴 𝐷 ) = ( 𝑥 𝑤 ) ) )
44 oveq2 ( 𝑑 = 𝐷 → ( 𝐵 𝑑 ) = ( 𝐵 𝐷 ) )
45 44 eqeq1d ( 𝑑 = 𝐷 → ( ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ↔ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) )
46 43 45 anbi12d ( 𝑑 = 𝐷 → ( ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) ↔ ( ( 𝐴 𝐷 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ) )
47 46 3anbi3d ( 𝑑 = 𝐷 → ( ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝑑 ) = ( 𝑦 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ) ) )
48 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑧 ) )
49 48 eleq2d ( 𝑥 = 𝑋 → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) )
50 49 anbi2d ( 𝑥 = 𝑋 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) )
51 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑦 ) = ( 𝑋 𝑦 ) )
52 51 eqeq2d ( 𝑥 = 𝑋 → ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ↔ ( 𝐴 𝐵 ) = ( 𝑋 𝑦 ) ) )
53 52 anbi1d ( 𝑥 = 𝑋 → ( ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ↔ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ) )
54 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑤 ) = ( 𝑋 𝑤 ) )
55 54 eqeq2d ( 𝑥 = 𝑋 → ( ( 𝐴 𝐷 ) = ( 𝑥 𝑤 ) ↔ ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ) )
56 55 anbi1d ( 𝑥 = 𝑋 → ( ( ( 𝐴 𝐷 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ↔ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ) )
57 50 53 56 3anbi123d ( 𝑥 = 𝑋 → ( ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑥 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑥 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ) ) )
58 eleq1 ( 𝑦 = 𝑌 → ( 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) )
59 58 anbi2d ( 𝑦 = 𝑌 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) )
60 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 𝑦 ) = ( 𝑋 𝑌 ) )
61 60 eqeq2d ( 𝑦 = 𝑌 → ( ( 𝐴 𝐵 ) = ( 𝑋 𝑦 ) ↔ ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ) )
62 oveq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑧 ) = ( 𝑌 𝑧 ) )
63 62 eqeq2d ( 𝑦 = 𝑌 → ( ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ↔ ( 𝐵 𝐶 ) = ( 𝑌 𝑧 ) ) )
64 61 63 anbi12d ( 𝑦 = 𝑌 → ( ( ( 𝐴 𝐵 ) = ( 𝑋 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ↔ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑧 ) ) ) )
65 oveq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑤 ) = ( 𝑌 𝑤 ) )
66 65 eqeq2d ( 𝑦 = 𝑌 → ( ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ↔ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) )
67 66 anbi2d ( 𝑦 = 𝑌 → ( ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ↔ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) ) )
68 59 64 67 3anbi123d ( 𝑦 = 𝑌 → ( ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑦 ) ∧ ( 𝐵 𝐶 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑦 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑧 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) ) ) )
69 oveq2 ( 𝑧 = 𝑍 → ( 𝑋 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑍 ) )
70 69 eleq2d ( 𝑧 = 𝑍 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) )
71 70 anbi2d ( 𝑧 = 𝑍 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
72 oveq2 ( 𝑧 = 𝑍 → ( 𝑌 𝑧 ) = ( 𝑌 𝑍 ) )
73 72 eqeq2d ( 𝑧 = 𝑍 → ( ( 𝐵 𝐶 ) = ( 𝑌 𝑧 ) ↔ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) )
74 73 anbi2d ( 𝑧 = 𝑍 → ( ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑧 ) ) ↔ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) ) )
75 71 74 3anbi12d ( 𝑧 = 𝑍 → ( ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑧 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) ) ) )
76 oveq2 ( 𝑤 = 𝑊 → ( 𝑋 𝑤 ) = ( 𝑋 𝑊 ) )
77 76 eqeq2d ( 𝑤 = 𝑊 → ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ↔ ( 𝐴 𝐷 ) = ( 𝑋 𝑊 ) ) )
78 oveq2 ( 𝑤 = 𝑊 → ( 𝑌 𝑤 ) = ( 𝑌 𝑊 ) )
79 78 eqeq2d ( 𝑤 = 𝑊 → ( ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ↔ ( 𝐵 𝐷 ) = ( 𝑌 𝑊 ) ) )
80 77 79 anbi12d ( 𝑤 = 𝑊 → ( ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) ↔ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑊 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑊 ) ) ) )
81 80 3anbi3d ( 𝑤 = 𝑊 → ( ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑤 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑤 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑊 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑊 ) ) ) ) )
82 1 2 3 4 afsval ( 𝜑 → ( AFS ‘ 𝐺 ) = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑥𝑃𝑦𝑃𝑧𝑃𝑤𝑃 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) } )
83 5 82 syl5eq ( 𝜑𝑂 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑥𝑃𝑦𝑃𝑧𝑃𝑤𝑃 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝐼 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) } )
84 23 34 41 47 57 68 75 81 83 6 7 8 9 10 11 12 13 br8d ( 𝜑 → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ 𝑂 ⟨ ⟨ 𝑋 , 𝑌 ⟩ , ⟨ 𝑍 , 𝑊 ⟩ ⟩ ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝑋 𝑌 ) ∧ ( 𝐵 𝐶 ) = ( 𝑌 𝑍 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝑋 𝑊 ) ∧ ( 𝐵 𝐷 ) = ( 𝑌 𝑊 ) ) ) ) )