Step |
Hyp |
Ref |
Expression |
1 |
|
tg5segofs.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tg5segofs.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
tg5segofs.s |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tg5segofs.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tg5segofs.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
tg5segofs.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
tg5segofs.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
tg5segofs.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
tg5segofs.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
tg5segofs.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
tg5segofs.o |
⊢ 𝑂 = ( AFS ‘ 𝐺 ) |
12 |
|
tg5segofs.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑃 ) |
13 |
|
tg5segofs.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑃 ) |
14 |
|
tg5segofs.1 |
⊢ ( 𝜑 → 〈 〈 𝐴 , 𝐵 〉 , 〈 𝐶 , 𝐷 〉 〉 𝑂 〈 〈 𝐸 , 𝐹 〉 , 〈 𝐻 , 𝐼 〉 〉 ) |
15 |
|
tg5segofs.2 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
16 |
1 2 3 4 11 5 6 7 8 9 10 12 13
|
brafs |
⊢ ( 𝜑 → ( 〈 〈 𝐴 , 𝐵 〉 , 〈 𝐶 , 𝐷 〉 〉 𝑂 〈 〈 𝐸 , 𝐹 〉 , 〈 𝐻 , 𝐼 〉 〉 ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) ∧ ( ( 𝐴 − 𝐵 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐹 − 𝐻 ) ) ∧ ( ( 𝐴 − 𝐷 ) = ( 𝐸 − 𝐼 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝐹 − 𝐼 ) ) ) ) ) |
17 |
14 16
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) ∧ ( ( 𝐴 − 𝐵 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐹 − 𝐻 ) ) ∧ ( ( 𝐴 − 𝐷 ) = ( 𝐸 − 𝐼 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝐹 − 𝐼 ) ) ) ) |
18 |
17
|
simp1d |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
20 |
18
|
simprd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) |
21 |
17
|
simp2d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐸 − 𝐹 ) ∧ ( 𝐵 − 𝐶 ) = ( 𝐹 − 𝐻 ) ) ) |
22 |
21
|
simpld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐸 − 𝐹 ) ) |
23 |
21
|
simprd |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐹 − 𝐻 ) ) |
24 |
17
|
simp3d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐷 ) = ( 𝐸 − 𝐼 ) ∧ ( 𝐵 − 𝐷 ) = ( 𝐹 − 𝐼 ) ) ) |
25 |
24
|
simpld |
⊢ ( 𝜑 → ( 𝐴 − 𝐷 ) = ( 𝐸 − 𝐼 ) ) |
26 |
24
|
simprd |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) = ( 𝐹 − 𝐼 ) ) |
27 |
1 2 3 4 5 6 7 9 10 12 8 13 15 19 20 22 23 25 26
|
axtg5seg |
⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) = ( 𝐻 − 𝐼 ) ) |