Metamath Proof Explorer


Theorem tg5segofs

Description: Rephrase axtg5seg using the outer five segment predicate. Theorem 2.10 of Schwabhauser p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tg5segofs.p 𝑃 = ( Base ‘ 𝐺 )
tg5segofs.m = ( dist ‘ 𝐺 )
tg5segofs.s 𝐼 = ( Itv ‘ 𝐺 )
tg5segofs.g ( 𝜑𝐺 ∈ TarskiG )
tg5segofs.a ( 𝜑𝐴𝑃 )
tg5segofs.b ( 𝜑𝐵𝑃 )
tg5segofs.c ( 𝜑𝐶𝑃 )
tg5segofs.d ( 𝜑𝐷𝑃 )
tg5segofs.e ( 𝜑𝐸𝑃 )
tg5segofs.f ( 𝜑𝐹𝑃 )
tg5segofs.o 𝑂 = ( AFS ‘ 𝐺 )
tg5segofs.h ( 𝜑𝐻𝑃 )
tg5segofs.i ( 𝜑𝐼𝑃 )
tg5segofs.1 ( 𝜑 → ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ 𝑂 ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐻 , 𝐼 ⟩ ⟩ )
tg5segofs.2 ( 𝜑𝐴𝐵 )
Assertion tg5segofs ( 𝜑 → ( 𝐶 𝐷 ) = ( 𝐻 𝐼 ) )

Proof

Step Hyp Ref Expression
1 tg5segofs.p 𝑃 = ( Base ‘ 𝐺 )
2 tg5segofs.m = ( dist ‘ 𝐺 )
3 tg5segofs.s 𝐼 = ( Itv ‘ 𝐺 )
4 tg5segofs.g ( 𝜑𝐺 ∈ TarskiG )
5 tg5segofs.a ( 𝜑𝐴𝑃 )
6 tg5segofs.b ( 𝜑𝐵𝑃 )
7 tg5segofs.c ( 𝜑𝐶𝑃 )
8 tg5segofs.d ( 𝜑𝐷𝑃 )
9 tg5segofs.e ( 𝜑𝐸𝑃 )
10 tg5segofs.f ( 𝜑𝐹𝑃 )
11 tg5segofs.o 𝑂 = ( AFS ‘ 𝐺 )
12 tg5segofs.h ( 𝜑𝐻𝑃 )
13 tg5segofs.i ( 𝜑𝐼𝑃 )
14 tg5segofs.1 ( 𝜑 → ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ 𝑂 ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐻 , 𝐼 ⟩ ⟩ )
15 tg5segofs.2 ( 𝜑𝐴𝐵 )
16 1 2 3 4 11 5 6 7 8 9 10 12 13 brafs ( 𝜑 → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ 𝑂 ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐻 , 𝐼 ⟩ ⟩ ↔ ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝐸 𝐹 ) ∧ ( 𝐵 𝐶 ) = ( 𝐹 𝐻 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝐸 𝐼 ) ∧ ( 𝐵 𝐷 ) = ( 𝐹 𝐼 ) ) ) ) )
17 14 16 mpbid ( 𝜑 → ( ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) ∧ ( ( 𝐴 𝐵 ) = ( 𝐸 𝐹 ) ∧ ( 𝐵 𝐶 ) = ( 𝐹 𝐻 ) ) ∧ ( ( 𝐴 𝐷 ) = ( 𝐸 𝐼 ) ∧ ( 𝐵 𝐷 ) = ( 𝐹 𝐼 ) ) ) )
18 17 simp1d ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐻 ) ) )
19 18 simpld ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
20 18 simprd ( 𝜑𝐹 ∈ ( 𝐸 𝐼 𝐻 ) )
21 17 simp2d ( 𝜑 → ( ( 𝐴 𝐵 ) = ( 𝐸 𝐹 ) ∧ ( 𝐵 𝐶 ) = ( 𝐹 𝐻 ) ) )
22 21 simpld ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐸 𝐹 ) )
23 21 simprd ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐹 𝐻 ) )
24 17 simp3d ( 𝜑 → ( ( 𝐴 𝐷 ) = ( 𝐸 𝐼 ) ∧ ( 𝐵 𝐷 ) = ( 𝐹 𝐼 ) ) )
25 24 simpld ( 𝜑 → ( 𝐴 𝐷 ) = ( 𝐸 𝐼 ) )
26 24 simprd ( 𝜑 → ( 𝐵 𝐷 ) = ( 𝐹 𝐼 ) )
27 1 2 3 4 5 6 7 9 10 12 8 13 15 19 20 22 23 25 26 axtg5seg ( 𝜑 → ( 𝐶 𝐷 ) = ( 𝐻 𝐼 ) )