| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tg5segofs.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tg5segofs.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | tg5segofs.s | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tg5segofs.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tg5segofs.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | tg5segofs.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | tg5segofs.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | tg5segofs.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | tg5segofs.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 10 |  | tg5segofs.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 11 |  | tg5segofs.o | ⊢ 𝑂  =  ( AFS ‘ 𝐺 ) | 
						
							| 12 |  | tg5segofs.h | ⊢ ( 𝜑  →  𝐻  ∈  𝑃 ) | 
						
							| 13 |  | tg5segofs.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑃 ) | 
						
							| 14 |  | tg5segofs.1 | ⊢ ( 𝜑  →  〈 〈 𝐴 ,  𝐵 〉 ,  〈 𝐶 ,  𝐷 〉 〉 𝑂 〈 〈 𝐸 ,  𝐹 〉 ,  〈 𝐻 ,  𝐼 〉 〉 ) | 
						
							| 15 |  | tg5segofs.2 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 16 | 1 2 3 4 11 5 6 7 8 9 10 12 13 | brafs | ⊢ ( 𝜑  →  ( 〈 〈 𝐴 ,  𝐵 〉 ,  〈 𝐶 ,  𝐷 〉 〉 𝑂 〈 〈 𝐸 ,  𝐹 〉 ,  〈 𝐻 ,  𝐼 〉 〉  ↔  ( ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐻 ) )  ∧  ( ( 𝐴  −  𝐵 )  =  ( 𝐸  −  𝐹 )  ∧  ( 𝐵  −  𝐶 )  =  ( 𝐹  −  𝐻 ) )  ∧  ( ( 𝐴  −  𝐷 )  =  ( 𝐸  −  𝐼 )  ∧  ( 𝐵  −  𝐷 )  =  ( 𝐹  −  𝐼 ) ) ) ) ) | 
						
							| 17 | 14 16 | mpbid | ⊢ ( 𝜑  →  ( ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐻 ) )  ∧  ( ( 𝐴  −  𝐵 )  =  ( 𝐸  −  𝐹 )  ∧  ( 𝐵  −  𝐶 )  =  ( 𝐹  −  𝐻 ) )  ∧  ( ( 𝐴  −  𝐷 )  =  ( 𝐸  −  𝐼 )  ∧  ( 𝐵  −  𝐷 )  =  ( 𝐹  −  𝐼 ) ) ) ) | 
						
							| 18 | 17 | simp1d | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐻 ) ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 20 | 18 | simprd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐸 𝐼 𝐻 ) ) | 
						
							| 21 | 17 | simp2d | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  =  ( 𝐸  −  𝐹 )  ∧  ( 𝐵  −  𝐶 )  =  ( 𝐹  −  𝐻 ) ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐸  −  𝐹 ) ) | 
						
							| 23 | 21 | simprd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐹  −  𝐻 ) ) | 
						
							| 24 | 17 | simp3d | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐷 )  =  ( 𝐸  −  𝐼 )  ∧  ( 𝐵  −  𝐷 )  =  ( 𝐹  −  𝐼 ) ) ) | 
						
							| 25 | 24 | simpld | ⊢ ( 𝜑  →  ( 𝐴  −  𝐷 )  =  ( 𝐸  −  𝐼 ) ) | 
						
							| 26 | 24 | simprd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐷 )  =  ( 𝐹  −  𝐼 ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 9 10 12 8 13 15 19 20 22 23 25 26 | axtg5seg | ⊢ ( 𝜑  →  ( 𝐶  −  𝐷 )  =  ( 𝐻  −  𝐼 ) ) |