| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tg5segofs.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tg5segofs.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tg5segofs.s |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tg5segofs.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tg5segofs.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | tg5segofs.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | tg5segofs.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | tg5segofs.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | tg5segofs.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | tg5segofs.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | tg5segofs.o |  |-  O = ( AFS ` G ) | 
						
							| 12 |  | tg5segofs.h |  |-  ( ph -> H e. P ) | 
						
							| 13 |  | tg5segofs.i |  |-  ( ph -> I e. P ) | 
						
							| 14 |  | tg5segofs.1 |  |-  ( ph -> <. <. A , B >. , <. C , D >. >. O <. <. E , F >. , <. H , I >. >. ) | 
						
							| 15 |  | tg5segofs.2 |  |-  ( ph -> A =/= B ) | 
						
							| 16 | 1 2 3 4 11 5 6 7 8 9 10 12 13 | brafs |  |-  ( ph -> ( <. <. A , B >. , <. C , D >. >. O <. <. E , F >. , <. H , I >. >. <-> ( ( B e. ( A I C ) /\ F e. ( E I H ) ) /\ ( ( A .- B ) = ( E .- F ) /\ ( B .- C ) = ( F .- H ) ) /\ ( ( A .- D ) = ( E .- I ) /\ ( B .- D ) = ( F .- I ) ) ) ) ) | 
						
							| 17 | 14 16 | mpbid |  |-  ( ph -> ( ( B e. ( A I C ) /\ F e. ( E I H ) ) /\ ( ( A .- B ) = ( E .- F ) /\ ( B .- C ) = ( F .- H ) ) /\ ( ( A .- D ) = ( E .- I ) /\ ( B .- D ) = ( F .- I ) ) ) ) | 
						
							| 18 | 17 | simp1d |  |-  ( ph -> ( B e. ( A I C ) /\ F e. ( E I H ) ) ) | 
						
							| 19 | 18 | simpld |  |-  ( ph -> B e. ( A I C ) ) | 
						
							| 20 | 18 | simprd |  |-  ( ph -> F e. ( E I H ) ) | 
						
							| 21 | 17 | simp2d |  |-  ( ph -> ( ( A .- B ) = ( E .- F ) /\ ( B .- C ) = ( F .- H ) ) ) | 
						
							| 22 | 21 | simpld |  |-  ( ph -> ( A .- B ) = ( E .- F ) ) | 
						
							| 23 | 21 | simprd |  |-  ( ph -> ( B .- C ) = ( F .- H ) ) | 
						
							| 24 | 17 | simp3d |  |-  ( ph -> ( ( A .- D ) = ( E .- I ) /\ ( B .- D ) = ( F .- I ) ) ) | 
						
							| 25 | 24 | simpld |  |-  ( ph -> ( A .- D ) = ( E .- I ) ) | 
						
							| 26 | 24 | simprd |  |-  ( ph -> ( B .- D ) = ( F .- I ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 9 10 12 8 13 15 19 20 22 23 25 26 | axtg5seg |  |-  ( ph -> ( C .- D ) = ( H .- I ) ) |