Metamath Proof Explorer


Theorem tg5segofs

Description: Rephrase axtg5seg using the outer five segment predicate. Theorem 2.10 of Schwabhauser p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tg5segofs.p P=BaseG
tg5segofs.m -˙=distG
tg5segofs.s I=ItvG
tg5segofs.g φG𝒢Tarski
tg5segofs.a φAP
tg5segofs.b φBP
tg5segofs.c φCP
tg5segofs.d φDP
tg5segofs.e φEP
tg5segofs.f φFP
tg5segofs.o O=AFSG
tg5segofs.h φHP
tg5segofs.i φIP
tg5segofs.1 φABCDOEFHI
tg5segofs.2 φAB
Assertion tg5segofs φC-˙D=H-˙I

Proof

Step Hyp Ref Expression
1 tg5segofs.p P=BaseG
2 tg5segofs.m -˙=distG
3 tg5segofs.s I=ItvG
4 tg5segofs.g φG𝒢Tarski
5 tg5segofs.a φAP
6 tg5segofs.b φBP
7 tg5segofs.c φCP
8 tg5segofs.d φDP
9 tg5segofs.e φEP
10 tg5segofs.f φFP
11 tg5segofs.o O=AFSG
12 tg5segofs.h φHP
13 tg5segofs.i φIP
14 tg5segofs.1 φABCDOEFHI
15 tg5segofs.2 φAB
16 1 2 3 4 11 5 6 7 8 9 10 12 13 brafs φABCDOEFHIBAICFEIHA-˙B=E-˙FB-˙C=F-˙HA-˙D=E-˙IB-˙D=F-˙I
17 14 16 mpbid φBAICFEIHA-˙B=E-˙FB-˙C=F-˙HA-˙D=E-˙IB-˙D=F-˙I
18 17 simp1d φBAICFEIH
19 18 simpld φBAIC
20 18 simprd φFEIH
21 17 simp2d φA-˙B=E-˙FB-˙C=F-˙H
22 21 simpld φA-˙B=E-˙F
23 21 simprd φB-˙C=F-˙H
24 17 simp3d φA-˙D=E-˙IB-˙D=F-˙I
25 24 simpld φA-˙D=E-˙I
26 24 simprd φB-˙D=F-˙I
27 1 2 3 4 5 6 7 9 10 12 8 13 15 19 20 22 23 25 26 axtg5seg φC-˙D=H-˙I