Metamath Proof Explorer


Definition df-afs

Description: The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom ( axtg5seg ). See df-ofs . Definition 2.10 of Schwabhauser p. 28. (Contributed by Scott Fenton, 21-Sep-2013) (Revised by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Assertion df-afs AFS = ( 𝑔 ∈ TarskiG ↦ { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cafs AFS
1 vg 𝑔
2 cstrkg TarskiG
3 ve 𝑒
4 vf 𝑓
5 cbs Base
6 1 cv 𝑔
7 6 5 cfv ( Base ‘ 𝑔 )
8 vp 𝑝
9 cds dist
10 6 9 cfv ( dist ‘ 𝑔 )
11 vh
12 citv Itv
13 6 12 cfv ( Itv ‘ 𝑔 )
14 vi 𝑖
15 va 𝑎
16 8 cv 𝑝
17 vb 𝑏
18 vc 𝑐
19 vd 𝑑
20 vx 𝑥
21 vy 𝑦
22 vz 𝑧
23 vw 𝑤
24 3 cv 𝑒
25 15 cv 𝑎
26 17 cv 𝑏
27 25 26 cop 𝑎 , 𝑏
28 18 cv 𝑐
29 19 cv 𝑑
30 28 29 cop 𝑐 , 𝑑
31 27 30 cop ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩
32 24 31 wceq 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩
33 4 cv 𝑓
34 20 cv 𝑥
35 21 cv 𝑦
36 34 35 cop 𝑥 , 𝑦
37 22 cv 𝑧
38 23 cv 𝑤
39 37 38 cop 𝑧 , 𝑤
40 36 39 cop ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩
41 33 40 wceq 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩
42 14 cv 𝑖
43 25 28 42 co ( 𝑎 𝑖 𝑐 )
44 26 43 wcel 𝑏 ∈ ( 𝑎 𝑖 𝑐 )
45 34 37 42 co ( 𝑥 𝑖 𝑧 )
46 35 45 wcel 𝑦 ∈ ( 𝑥 𝑖 𝑧 )
47 44 46 wa ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
48 11 cv
49 25 26 48 co ( 𝑎 𝑏 )
50 34 35 48 co ( 𝑥 𝑦 )
51 49 50 wceq ( 𝑎 𝑏 ) = ( 𝑥 𝑦 )
52 26 28 48 co ( 𝑏 𝑐 )
53 35 37 48 co ( 𝑦 𝑧 )
54 52 53 wceq ( 𝑏 𝑐 ) = ( 𝑦 𝑧 )
55 51 54 wa ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) )
56 25 29 48 co ( 𝑎 𝑑 )
57 34 38 48 co ( 𝑥 𝑤 )
58 56 57 wceq ( 𝑎 𝑑 ) = ( 𝑥 𝑤 )
59 26 29 48 co ( 𝑏 𝑑 )
60 35 38 48 co ( 𝑦 𝑤 )
61 59 60 wceq ( 𝑏 𝑑 ) = ( 𝑦 𝑤 )
62 58 61 wa ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) )
63 47 55 62 w3a ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) )
64 32 41 63 w3a ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
65 64 23 16 wrex 𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
66 65 22 16 wrex 𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
67 66 21 16 wrex 𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
68 67 20 16 wrex 𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
69 68 19 16 wrex 𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
70 69 18 16 wrex 𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
71 70 17 16 wrex 𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
72 71 15 16 wrex 𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
73 72 14 13 wsbc [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
74 73 11 10 wsbc [ ( dist ‘ 𝑔 ) / ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
75 74 8 7 wsbc [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) )
76 75 3 4 copab { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) }
77 1 2 76 cmpt ( 𝑔 ∈ TarskiG ↦ { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) } )
78 0 77 wceq AFS = ( 𝑔 ∈ TarskiG ↦ { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 ( 𝑒 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑓 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , ⟨ 𝑧 , 𝑤 ⟩ ⟩ ∧ ( ( 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ( ( 𝑎 𝑏 ) = ( 𝑥 𝑦 ) ∧ ( 𝑏 𝑐 ) = ( 𝑦 𝑧 ) ) ∧ ( ( 𝑎 𝑑 ) = ( 𝑥 𝑤 ) ∧ ( 𝑏 𝑑 ) = ( 𝑦 𝑤 ) ) ) ) } )