Metamath Proof Explorer


Definition df-archi

Description: A structure said to be Archimedean if it has no infinitesimal elements. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Assertion df-archi
|- Archi = { w | ( <<< ` w ) = (/) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 carchi
 |-  Archi
1 vw
 |-  w
2 cinftm
 |-  <<<
3 1 cv
 |-  w
4 3 2 cfv
 |-  ( <<< ` w )
5 c0
 |-  (/)
6 4 5 wceq
 |-  ( <<< ` w ) = (/)
7 6 1 cab
 |-  { w | ( <<< ` w ) = (/) }
8 0 7 wceq
 |-  Archi = { w | ( <<< ` w ) = (/) }