Metamath Proof Explorer


Definition df-archi

Description: A structure said to be Archimedean if it has no infinitesimal elements. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Assertion df-archi Archi = { 𝑤 ∣ ( ⋘ ‘ 𝑤 ) = ∅ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 carchi Archi
1 vw 𝑤
2 cinftm
3 1 cv 𝑤
4 3 2 cfv ( ⋘ ‘ 𝑤 )
5 c0
6 4 5 wceq ( ⋘ ‘ 𝑤 ) = ∅
7 6 1 cab { 𝑤 ∣ ( ⋘ ‘ 𝑤 ) = ∅ }
8 0 7 wceq Archi = { 𝑤 ∣ ( ⋘ ‘ 𝑤 ) = ∅ }