Metamath Proof Explorer
Description: A structure said to be Archimedean if it has no infinitesimal elements.
(Contributed by Thierry Arnoux, 30-Jan-2018)
|
|
Ref |
Expression |
|
Assertion |
df-archi |
⊢ Archi = { 𝑤 ∣ ( ⋘ ‘ 𝑤 ) = ∅ } |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
carchi |
⊢ Archi |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cinftm |
⊢ ⋘ |
| 3 |
1
|
cv |
⊢ 𝑤 |
| 4 |
3 2
|
cfv |
⊢ ( ⋘ ‘ 𝑤 ) |
| 5 |
|
c0 |
⊢ ∅ |
| 6 |
4 5
|
wceq |
⊢ ( ⋘ ‘ 𝑤 ) = ∅ |
| 7 |
6 1
|
cab |
⊢ { 𝑤 ∣ ( ⋘ ‘ 𝑤 ) = ∅ } |
| 8 |
0 7
|
wceq |
⊢ Archi = { 𝑤 ∣ ( ⋘ ‘ 𝑤 ) = ∅ } |