Step |
Hyp |
Ref |
Expression |
1 |
|
inftm.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
5 |
4
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↔ 𝑥 ∈ 𝐵 ) ) |
6 |
4
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑦 ∈ ( Base ‘ 𝑤 ) ↔ 𝑦 ∈ 𝐵 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 0g ‘ 𝑤 ) = ( 0g ‘ 𝑊 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( lt ‘ 𝑤 ) = ( lt ‘ 𝑊 ) ) |
10 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑥 = 𝑥 ) |
11 |
8 9 10
|
breq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ↔ ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( .g ‘ 𝑤 ) = ( .g ‘ 𝑊 ) ) |
13 |
12
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) = ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ) |
14 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑦 = 𝑦 ) |
15 |
13 9 14
|
breq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ↔ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) |
17 |
11 16
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ↔ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) ) |
18 |
7 17
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) ) ) |
19 |
18
|
opabbidv |
⊢ ( 𝑤 = 𝑊 → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ) |
20 |
|
df-inftm |
⊢ ⋘ = ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } ) |
21 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
22 |
21 21
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
23 |
|
opabssxp |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ⊆ ( 𝐵 × 𝐵 ) |
24 |
22 23
|
ssexi |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ∈ V |
25 |
19 20 24
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ⋘ ‘ 𝑊 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ) |
26 |
2 25
|
syl |
⊢ ( 𝑊 ∈ 𝑉 → ( ⋘ ‘ 𝑊 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ( 0g ‘ 𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ) |
27 |
26 23
|
eqsstrdi |
⊢ ( 𝑊 ∈ 𝑉 → ( ⋘ ‘ 𝑊 ) ⊆ ( 𝐵 × 𝐵 ) ) |