Metamath Proof Explorer


Theorem inftmrel

Description: The infinitesimal relation for a structure W . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypothesis inftm.b 𝐵 = ( Base ‘ 𝑊 )
Assertion inftmrel ( 𝑊𝑉 → ( ⋘ ‘ 𝑊 ) ⊆ ( 𝐵 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 inftm.b 𝐵 = ( Base ‘ 𝑊 )
2 elex ( 𝑊𝑉𝑊 ∈ V )
3 fveq2 ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) )
4 3 1 eqtr4di ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 )
5 4 eleq2d ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↔ 𝑥𝐵 ) )
6 4 eleq2d ( 𝑤 = 𝑊 → ( 𝑦 ∈ ( Base ‘ 𝑤 ) ↔ 𝑦𝐵 ) )
7 5 6 anbi12d ( 𝑤 = 𝑊 → ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ↔ ( 𝑥𝐵𝑦𝐵 ) ) )
8 fveq2 ( 𝑤 = 𝑊 → ( 0g𝑤 ) = ( 0g𝑊 ) )
9 fveq2 ( 𝑤 = 𝑊 → ( lt ‘ 𝑤 ) = ( lt ‘ 𝑊 ) )
10 eqidd ( 𝑤 = 𝑊𝑥 = 𝑥 )
11 8 9 10 breq123d ( 𝑤 = 𝑊 → ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ↔ ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ) )
12 fveq2 ( 𝑤 = 𝑊 → ( .g𝑤 ) = ( .g𝑊 ) )
13 12 oveqd ( 𝑤 = 𝑊 → ( 𝑛 ( .g𝑤 ) 𝑥 ) = ( 𝑛 ( .g𝑊 ) 𝑥 ) )
14 eqidd ( 𝑤 = 𝑊𝑦 = 𝑦 )
15 13 9 14 breq123d ( 𝑤 = 𝑊 → ( ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ↔ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) )
16 15 ralbidv ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ↔ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) )
17 11 16 anbi12d ( 𝑤 = 𝑊 → ( ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ↔ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) )
18 7 17 anbi12d ( 𝑤 = 𝑊 → ( ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) ↔ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) ) )
19 18 opabbidv ( 𝑤 = 𝑊 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } )
20 df-inftm ⋘ = ( 𝑤 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } )
21 1 fvexi 𝐵 ∈ V
22 21 21 xpex ( 𝐵 × 𝐵 ) ∈ V
23 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ⊆ ( 𝐵 × 𝐵 )
24 22 23 ssexi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } ∈ V
25 19 20 24 fvmpt ( 𝑊 ∈ V → ( ⋘ ‘ 𝑊 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } )
26 2 25 syl ( 𝑊𝑉 → ( ⋘ ‘ 𝑊 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ( ( 0g𝑊 ) ( lt ‘ 𝑊 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑊 ) 𝑥 ) ( lt ‘ 𝑊 ) 𝑦 ) ) } )
27 26 23 eqsstrdi ( 𝑊𝑉 → ( ⋘ ‘ 𝑊 ) ⊆ ( 𝐵 × 𝐵 ) )