Step |
Hyp |
Ref |
Expression |
1 |
|
inftm.b |
|- B = ( Base ` W ) |
2 |
|
elex |
|- ( W e. V -> W e. _V ) |
3 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
4 |
3 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = B ) |
5 |
4
|
eleq2d |
|- ( w = W -> ( x e. ( Base ` w ) <-> x e. B ) ) |
6 |
4
|
eleq2d |
|- ( w = W -> ( y e. ( Base ` w ) <-> y e. B ) ) |
7 |
5 6
|
anbi12d |
|- ( w = W -> ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) <-> ( x e. B /\ y e. B ) ) ) |
8 |
|
fveq2 |
|- ( w = W -> ( 0g ` w ) = ( 0g ` W ) ) |
9 |
|
fveq2 |
|- ( w = W -> ( lt ` w ) = ( lt ` W ) ) |
10 |
|
eqidd |
|- ( w = W -> x = x ) |
11 |
8 9 10
|
breq123d |
|- ( w = W -> ( ( 0g ` w ) ( lt ` w ) x <-> ( 0g ` W ) ( lt ` W ) x ) ) |
12 |
|
fveq2 |
|- ( w = W -> ( .g ` w ) = ( .g ` W ) ) |
13 |
12
|
oveqd |
|- ( w = W -> ( n ( .g ` w ) x ) = ( n ( .g ` W ) x ) ) |
14 |
|
eqidd |
|- ( w = W -> y = y ) |
15 |
13 9 14
|
breq123d |
|- ( w = W -> ( ( n ( .g ` w ) x ) ( lt ` w ) y <-> ( n ( .g ` W ) x ) ( lt ` W ) y ) ) |
16 |
15
|
ralbidv |
|- ( w = W -> ( A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y <-> A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) |
17 |
11 16
|
anbi12d |
|- ( w = W -> ( ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) <-> ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) ) |
18 |
7 17
|
anbi12d |
|- ( w = W -> ( ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) <-> ( ( x e. B /\ y e. B ) /\ ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) ) ) |
19 |
18
|
opabbidv |
|- ( w = W -> { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) } ) |
20 |
|
df-inftm |
|- <<< = ( w e. _V |-> { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } ) |
21 |
1
|
fvexi |
|- B e. _V |
22 |
21 21
|
xpex |
|- ( B X. B ) e. _V |
23 |
|
opabssxp |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) } C_ ( B X. B ) |
24 |
22 23
|
ssexi |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) } e. _V |
25 |
19 20 24
|
fvmpt |
|- ( W e. _V -> ( <<< ` W ) = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) } ) |
26 |
2 25
|
syl |
|- ( W e. V -> ( <<< ` W ) = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( ( 0g ` W ) ( lt ` W ) x /\ A. n e. NN ( n ( .g ` W ) x ) ( lt ` W ) y ) ) } ) |
27 |
26 23
|
eqsstrdi |
|- ( W e. V -> ( <<< ` W ) C_ ( B X. B ) ) |