Step |
Hyp |
Ref |
Expression |
0 |
|
cinftm |
|- <<< |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
vy |
|- y |
5 |
3
|
cv |
|- x |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- w |
8 |
7 6
|
cfv |
|- ( Base ` w ) |
9 |
5 8
|
wcel |
|- x e. ( Base ` w ) |
10 |
4
|
cv |
|- y |
11 |
10 8
|
wcel |
|- y e. ( Base ` w ) |
12 |
9 11
|
wa |
|- ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) |
13 |
|
c0g |
|- 0g |
14 |
7 13
|
cfv |
|- ( 0g ` w ) |
15 |
|
cplt |
|- lt |
16 |
7 15
|
cfv |
|- ( lt ` w ) |
17 |
14 5 16
|
wbr |
|- ( 0g ` w ) ( lt ` w ) x |
18 |
|
vn |
|- n |
19 |
|
cn |
|- NN |
20 |
18
|
cv |
|- n |
21 |
|
cmg |
|- .g |
22 |
7 21
|
cfv |
|- ( .g ` w ) |
23 |
20 5 22
|
co |
|- ( n ( .g ` w ) x ) |
24 |
23 10 16
|
wbr |
|- ( n ( .g ` w ) x ) ( lt ` w ) y |
25 |
24 18 19
|
wral |
|- A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y |
26 |
17 25
|
wa |
|- ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) |
27 |
12 26
|
wa |
|- ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) |
28 |
27 3 4
|
copab |
|- { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } |
29 |
1 2 28
|
cmpt |
|- ( w e. _V |-> { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } ) |
30 |
0 29
|
wceq |
|- <<< = ( w e. _V |-> { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } ) |