| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cinftm |
|- <<< |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
vy |
|- y |
| 5 |
3
|
cv |
|- x |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- w |
| 8 |
7 6
|
cfv |
|- ( Base ` w ) |
| 9 |
5 8
|
wcel |
|- x e. ( Base ` w ) |
| 10 |
4
|
cv |
|- y |
| 11 |
10 8
|
wcel |
|- y e. ( Base ` w ) |
| 12 |
9 11
|
wa |
|- ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) |
| 13 |
|
c0g |
|- 0g |
| 14 |
7 13
|
cfv |
|- ( 0g ` w ) |
| 15 |
|
cplt |
|- lt |
| 16 |
7 15
|
cfv |
|- ( lt ` w ) |
| 17 |
14 5 16
|
wbr |
|- ( 0g ` w ) ( lt ` w ) x |
| 18 |
|
vn |
|- n |
| 19 |
|
cn |
|- NN |
| 20 |
18
|
cv |
|- n |
| 21 |
|
cmg |
|- .g |
| 22 |
7 21
|
cfv |
|- ( .g ` w ) |
| 23 |
20 5 22
|
co |
|- ( n ( .g ` w ) x ) |
| 24 |
23 10 16
|
wbr |
|- ( n ( .g ` w ) x ) ( lt ` w ) y |
| 25 |
24 18 19
|
wral |
|- A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y |
| 26 |
17 25
|
wa |
|- ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) |
| 27 |
12 26
|
wa |
|- ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) |
| 28 |
27 3 4
|
copab |
|- { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } |
| 29 |
1 2 28
|
cmpt |
|- ( w e. _V |-> { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } ) |
| 30 |
0 29
|
wceq |
|- <<< = ( w e. _V |-> { <. x , y >. | ( ( x e. ( Base ` w ) /\ y e. ( Base ` w ) ) /\ ( ( 0g ` w ) ( lt ` w ) x /\ A. n e. NN ( n ( .g ` w ) x ) ( lt ` w ) y ) ) } ) |