| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cinftm |
⊢ ⋘ |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
vy |
⊢ 𝑦 |
| 5 |
3
|
cv |
⊢ 𝑥 |
| 6 |
|
cbs |
⊢ Base |
| 7 |
1
|
cv |
⊢ 𝑤 |
| 8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 9 |
5 8
|
wcel |
⊢ 𝑥 ∈ ( Base ‘ 𝑤 ) |
| 10 |
4
|
cv |
⊢ 𝑦 |
| 11 |
10 8
|
wcel |
⊢ 𝑦 ∈ ( Base ‘ 𝑤 ) |
| 12 |
9 11
|
wa |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) |
| 13 |
|
c0g |
⊢ 0g |
| 14 |
7 13
|
cfv |
⊢ ( 0g ‘ 𝑤 ) |
| 15 |
|
cplt |
⊢ lt |
| 16 |
7 15
|
cfv |
⊢ ( lt ‘ 𝑤 ) |
| 17 |
14 5 16
|
wbr |
⊢ ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 |
| 18 |
|
vn |
⊢ 𝑛 |
| 19 |
|
cn |
⊢ ℕ |
| 20 |
18
|
cv |
⊢ 𝑛 |
| 21 |
|
cmg |
⊢ .g |
| 22 |
7 21
|
cfv |
⊢ ( .g ‘ 𝑤 ) |
| 23 |
20 5 22
|
co |
⊢ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) |
| 24 |
23 10 16
|
wbr |
⊢ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 |
| 25 |
24 18 19
|
wral |
⊢ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 |
| 26 |
17 25
|
wa |
⊢ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) |
| 27 |
12 26
|
wa |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) |
| 28 |
27 3 4
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } |
| 29 |
1 2 28
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } ) |
| 30 |
0 29
|
wceq |
⊢ ⋘ = ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } ) |