Metamath Proof Explorer


Definition df-inftm

Description: Define the relation " x is infinitesimal with respect to y " for a structure w . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Assertion df-inftm ⋘ = ( 𝑤 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinftm
1 vw 𝑤
2 cvv V
3 vx 𝑥
4 vy 𝑦
5 3 cv 𝑥
6 cbs Base
7 1 cv 𝑤
8 7 6 cfv ( Base ‘ 𝑤 )
9 5 8 wcel 𝑥 ∈ ( Base ‘ 𝑤 )
10 4 cv 𝑦
11 10 8 wcel 𝑦 ∈ ( Base ‘ 𝑤 )
12 9 11 wa ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) )
13 c0g 0g
14 7 13 cfv ( 0g𝑤 )
15 cplt lt
16 7 15 cfv ( lt ‘ 𝑤 )
17 14 5 16 wbr ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥
18 vn 𝑛
19 cn
20 18 cv 𝑛
21 cmg .g
22 7 21 cfv ( .g𝑤 )
23 20 5 22 co ( 𝑛 ( .g𝑤 ) 𝑥 )
24 23 10 16 wbr ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦
25 24 18 19 wral 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦
26 17 25 wa ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 )
27 12 26 wa ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) )
28 27 3 4 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) }
29 1 2 28 cmpt ( 𝑤 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } )
30 0 29 wceq ⋘ = ( 𝑤 ∈ V ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } )