Step |
Hyp |
Ref |
Expression |
0 |
|
cinftm |
⊢ ⋘ |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
vy |
⊢ 𝑦 |
5 |
3
|
cv |
⊢ 𝑥 |
6 |
|
cbs |
⊢ Base |
7 |
1
|
cv |
⊢ 𝑤 |
8 |
7 6
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
9 |
5 8
|
wcel |
⊢ 𝑥 ∈ ( Base ‘ 𝑤 ) |
10 |
4
|
cv |
⊢ 𝑦 |
11 |
10 8
|
wcel |
⊢ 𝑦 ∈ ( Base ‘ 𝑤 ) |
12 |
9 11
|
wa |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) |
13 |
|
c0g |
⊢ 0g |
14 |
7 13
|
cfv |
⊢ ( 0g ‘ 𝑤 ) |
15 |
|
cplt |
⊢ lt |
16 |
7 15
|
cfv |
⊢ ( lt ‘ 𝑤 ) |
17 |
14 5 16
|
wbr |
⊢ ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 |
18 |
|
vn |
⊢ 𝑛 |
19 |
|
cn |
⊢ ℕ |
20 |
18
|
cv |
⊢ 𝑛 |
21 |
|
cmg |
⊢ .g |
22 |
7 21
|
cfv |
⊢ ( .g ‘ 𝑤 ) |
23 |
20 5 22
|
co |
⊢ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) |
24 |
23 10 16
|
wbr |
⊢ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 |
25 |
24 18 19
|
wral |
⊢ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 |
26 |
17 25
|
wa |
⊢ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) |
27 |
12 26
|
wa |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) |
28 |
27 3 4
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } |
29 |
1 2 28
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } ) |
30 |
0 29
|
wceq |
⊢ ⋘ = ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ 𝑦 ∈ ( Base ‘ 𝑤 ) ) ∧ ( ( 0g ‘ 𝑤 ) ( lt ‘ 𝑤 ) 𝑥 ∧ ∀ 𝑛 ∈ ℕ ( 𝑛 ( .g ‘ 𝑤 ) 𝑥 ) ( lt ‘ 𝑤 ) 𝑦 ) ) } ) |