Description: Define a generalized binomial coefficient operation, which unlike df-bc allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bcc | |- _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cbcc | |- _Cc | |
| 1 | vc | |- c | |
| 2 | cc | |- CC | |
| 3 | vk | |- k | |
| 4 | cn0 | |- NN0 | |
| 5 | 1 | cv | |- c | 
| 6 | cfallfac | |- FallFac | |
| 7 | 3 | cv | |- k | 
| 8 | 5 7 6 | co | |- ( c FallFac k ) | 
| 9 | cdiv | |- / | |
| 10 | cfa | |- ! | |
| 11 | 7 10 | cfv | |- ( ! ` k ) | 
| 12 | 8 11 9 | co | |- ( ( c FallFac k ) / ( ! ` k ) ) | 
| 13 | 1 3 2 4 12 | cmpo | |- ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) | 
| 14 | 0 13 | wceq | |- _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) |