Metamath Proof Explorer


Definition df-bcc

Description: Define a generalized binomial coefficient operation, which unlike df-bc allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Assertion df-bcc
|- _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbcc
 |-  _Cc
1 vc
 |-  c
2 cc
 |-  CC
3 vk
 |-  k
4 cn0
 |-  NN0
5 1 cv
 |-  c
6 cfallfac
 |-  FallFac
7 3 cv
 |-  k
8 5 7 6 co
 |-  ( c FallFac k )
9 cdiv
 |-  /
10 cfa
 |-  !
11 7 10 cfv
 |-  ( ! ` k )
12 8 11 9 co
 |-  ( ( c FallFac k ) / ( ! ` k ) )
13 1 3 2 4 12 cmpo
 |-  ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) )
14 0 13 wceq
 |-  _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) )