Step |
Hyp |
Ref |
Expression |
1 |
|
bccval.c |
|- ( ph -> C e. CC ) |
2 |
|
bccval.k |
|- ( ph -> K e. NN0 ) |
3 |
|
df-bcc |
|- _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) |
4 |
3
|
a1i |
|- ( ph -> _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) ) |
5 |
|
simprl |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> c = C ) |
6 |
|
simprr |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> k = K ) |
7 |
5 6
|
oveq12d |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> ( c FallFac k ) = ( C FallFac K ) ) |
8 |
6
|
fveq2d |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> ( ! ` k ) = ( ! ` K ) ) |
9 |
7 8
|
oveq12d |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> ( ( c FallFac k ) / ( ! ` k ) ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
10 |
|
ovexd |
|- ( ph -> ( ( C FallFac K ) / ( ! ` K ) ) e. _V ) |
11 |
4 9 1 2 10
|
ovmpod |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |