| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bccval.c |
|- ( ph -> C e. CC ) |
| 2 |
|
bccval.k |
|- ( ph -> K e. NN0 ) |
| 3 |
|
df-bcc |
|- _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) |
| 4 |
3
|
a1i |
|- ( ph -> _Cc = ( c e. CC , k e. NN0 |-> ( ( c FallFac k ) / ( ! ` k ) ) ) ) |
| 5 |
|
simprl |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> c = C ) |
| 6 |
|
simprr |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> k = K ) |
| 7 |
5 6
|
oveq12d |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> ( c FallFac k ) = ( C FallFac K ) ) |
| 8 |
6
|
fveq2d |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> ( ! ` k ) = ( ! ` K ) ) |
| 9 |
7 8
|
oveq12d |
|- ( ( ph /\ ( c = C /\ k = K ) ) -> ( ( c FallFac k ) / ( ! ` k ) ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
| 10 |
|
ovexd |
|- ( ph -> ( ( C FallFac K ) / ( ! ` K ) ) e. _V ) |
| 11 |
4 9 1 2 10
|
ovmpod |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |