Metamath Proof Explorer


Theorem bccval

Description: Value of the generalized binomial coefficient, C choose K . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c ( 𝜑𝐶 ∈ ℂ )
bccval.k ( 𝜑𝐾 ∈ ℕ0 )
Assertion bccval ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 bccval.c ( 𝜑𝐶 ∈ ℂ )
2 bccval.k ( 𝜑𝐾 ∈ ℕ0 )
3 df-bcc C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )
4 3 a1i ( 𝜑 → C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) ) )
5 simprl ( ( 𝜑 ∧ ( 𝑐 = 𝐶𝑘 = 𝐾 ) ) → 𝑐 = 𝐶 )
6 simprr ( ( 𝜑 ∧ ( 𝑐 = 𝐶𝑘 = 𝐾 ) ) → 𝑘 = 𝐾 )
7 5 6 oveq12d ( ( 𝜑 ∧ ( 𝑐 = 𝐶𝑘 = 𝐾 ) ) → ( 𝑐 FallFac 𝑘 ) = ( 𝐶 FallFac 𝐾 ) )
8 6 fveq2d ( ( 𝜑 ∧ ( 𝑐 = 𝐶𝑘 = 𝐾 ) ) → ( ! ‘ 𝑘 ) = ( ! ‘ 𝐾 ) )
9 7 8 oveq12d ( ( 𝜑 ∧ ( 𝑐 = 𝐶𝑘 = 𝐾 ) ) → ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) )
10 ovexd ( 𝜑 → ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ V )
11 4 9 1 2 10 ovmpod ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) )