Step |
Hyp |
Ref |
Expression |
1 |
|
bccval.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
2 |
|
bccval.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
3 |
|
df-bcc |
⊢ C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
5 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑘 = 𝐾 ) ) → 𝑐 = 𝐶 ) |
6 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑘 = 𝐾 ) ) → 𝑘 = 𝐾 ) |
7 |
5 6
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑘 = 𝐾 ) ) → ( 𝑐 FallFac 𝑘 ) = ( 𝐶 FallFac 𝐾 ) ) |
8 |
6
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑘 = 𝐾 ) ) → ( ! ‘ 𝑘 ) = ( ! ‘ 𝐾 ) ) |
9 |
7 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑘 = 𝐾 ) ) → ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |
10 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ V ) |
11 |
4 9 1 2 10
|
ovmpod |
⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |