Metamath Proof Explorer


Theorem bccval

Description: Value of the generalized binomial coefficient, C choose K . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φC
bccval.k φK0
Assertion bccval φCC𝑐K=CK_K!

Proof

Step Hyp Ref Expression
1 bccval.c φC
2 bccval.k φK0
3 df-bcc C𝑐=c,k0ck_k!
4 3 a1i φC𝑐=c,k0ck_k!
5 simprl φc=Ck=Kc=C
6 simprr φc=Ck=Kk=K
7 5 6 oveq12d φc=Ck=Kck_=CK_
8 6 fveq2d φc=Ck=Kk!=K!
9 7 8 oveq12d φc=Ck=Kck_k!=CK_K!
10 ovexd φCK_K!V
11 4 9 1 2 10 ovmpod φCC𝑐K=CK_K!