Metamath Proof Explorer


Theorem bccval

Description: Value of the generalized binomial coefficient, C choose K . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φ C
bccval.k φ K 0
Assertion bccval φ C C 𝑐 K = C K _ K !

Proof

Step Hyp Ref Expression
1 bccval.c φ C
2 bccval.k φ K 0
3 df-bcc C 𝑐 = c , k 0 c k _ k !
4 3 a1i φ C 𝑐 = c , k 0 c k _ k !
5 simprl φ c = C k = K c = C
6 simprr φ c = C k = K k = K
7 5 6 oveq12d φ c = C k = K c k _ = C K _
8 6 fveq2d φ c = C k = K k ! = K !
9 7 8 oveq12d φ c = C k = K c k _ k ! = C K _ K !
10 ovexd φ C K _ K ! V
11 4 9 1 2 10 ovmpod φ C C 𝑐 K = C K _ K !