Metamath Proof Explorer


Definition df-bcc

Description: Define a generalized binomial coefficient operation, which unlike df-bc allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Assertion df-bcc C 𝑐 = c , k 0 c k _ k !

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbcc class C 𝑐
1 vc setvar c
2 cc class
3 vk setvar k
4 cn0 class 0
5 1 cv setvar c
6 cfallfac class FallFac
7 3 cv setvar k
8 5 7 6 co class c k _
9 cdiv class ÷
10 cfa class !
11 7 10 cfv class k !
12 8 11 9 co class c k _ k !
13 1 3 2 4 12 cmpo class c , k 0 c k _ k !
14 0 13 wceq wff C 𝑐 = c , k 0 c k _ k !