Metamath Proof Explorer


Definition df-bcc

Description: Define a generalized binomial coefficient operation, which unlike df-bc allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Assertion df-bcc C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbcc C𝑐
1 vc 𝑐
2 cc
3 vk 𝑘
4 cn0 0
5 1 cv 𝑐
6 cfallfac FallFac
7 3 cv 𝑘
8 5 7 6 co ( 𝑐 FallFac 𝑘 )
9 cdiv /
10 cfa !
11 7 10 cfv ( ! ‘ 𝑘 )
12 8 11 9 co ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) )
13 1 3 2 4 12 cmpo ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )
14 0 13 wceq C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )