Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steve Rodriguez
The generalized binomial coefficient operation
df-bcc
Metamath Proof Explorer
Description: Define a generalized binomial coefficient operation, which unlike
df-bc allows complex numbers for the first argument. (Contributed by Steve Rodriguez , 22-Apr-2020)
Ref
Expression
Assertion
df-bcc
⊢ C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cbcc
⊢ C𝑐
1
vc
⊢ 𝑐
2
cc
⊢ ℂ
3
vk
⊢ 𝑘
4
cn0
⊢ ℕ0
5
1
cv
⊢ 𝑐
6
cfallfac
⊢ FallFac
7
3
cv
⊢ 𝑘
8
5 7 6
co
⊢ ( 𝑐 FallFac 𝑘 )
9
cdiv
⊢ /
10
cfa
⊢ !
11
7 10
cfv
⊢ ( ! ‘ 𝑘 )
12
8 11 9
co
⊢ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) )
13
1 3 2 4 12
cmpo
⊢ ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )
14
0 13
wceq
⊢ C𝑐 = ( 𝑐 ∈ ℂ , 𝑘 ∈ ℕ0 ↦ ( ( 𝑐 FallFac 𝑘 ) / ( ! ‘ 𝑘 ) ) )