Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Steve Rodriguez The generalized binomial coefficient operation df-bcc  
				
		 
		
			
		 
		Description:   Define a generalized binomial coefficient operation, which unlike
       df-bc  allows complex numbers for the first argument.  (Contributed by Steve Rodriguez , 22-Apr-2020) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-bcc ⊢   C𝑐   =  ( 𝑐   ∈  ℂ ,  𝑘   ∈  ℕ0   ↦  ( ( 𝑐   FallFac  𝑘  )  /  ( ! ‘ 𝑘  ) ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cbcc ⊢  C𝑐   
						
							1 
								
							 
							vc ⊢  𝑐   
						
							2 
								
							 
							cc ⊢  ℂ  
						
							3 
								
							 
							vk ⊢  𝑘   
						
							4 
								
							 
							cn0 ⊢  ℕ0   
						
							5 
								1 
							 
							cv ⊢  𝑐   
						
							6 
								
							 
							cfallfac ⊢   FallFac   
						
							7 
								3 
							 
							cv ⊢  𝑘   
						
							8 
								5  7  6 
							 
							co ⊢  ( 𝑐   FallFac  𝑘  )  
						
							9 
								
							 
							cdiv ⊢   /   
						
							10 
								
							 
							cfa ⊢  !  
						
							11 
								7  10 
							 
							cfv ⊢  ( ! ‘ 𝑘  )  
						
							12 
								8  11  9 
							 
							co ⊢  ( ( 𝑐   FallFac  𝑘  )  /  ( ! ‘ 𝑘  ) )  
						
							13 
								1  3  2  4  12 
							 
							cmpo ⊢  ( 𝑐   ∈  ℂ ,  𝑘   ∈  ℕ0   ↦  ( ( 𝑐   FallFac  𝑘  )  /  ( ! ‘ 𝑘  ) ) )  
						
							14 
								0  13 
							 
							wceq ⊢  C𝑐   =  ( 𝑐   ∈  ℂ ,  𝑘   ∈  ℕ0   ↦  ( ( 𝑐   FallFac  𝑘  )  /  ( ! ‘ 𝑘  ) ) )