Metamath Proof Explorer


Theorem bcccl

Description: Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φ C
bccval.k φ K 0
Assertion bcccl φ C C 𝑐 K

Proof

Step Hyp Ref Expression
1 bccval.c φ C
2 bccval.k φ K 0
3 1 2 bccval φ C C 𝑐 K = C K _ K !
4 fallfaccl C K 0 C K _
5 1 2 4 syl2anc φ C K _
6 faccl K 0 K !
7 2 6 syl φ K !
8 7 nncnd φ K !
9 7 nnne0d φ K ! 0
10 5 8 9 divcld φ C K _ K !
11 3 10 eqeltrd φ C C 𝑐 K