Metamath Proof Explorer


Theorem bcccl

Description: Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φC
bccval.k φK0
Assertion bcccl φCC𝑐K

Proof

Step Hyp Ref Expression
1 bccval.c φC
2 bccval.k φK0
3 1 2 bccval φCC𝑐K=CK_K!
4 fallfaccl CK0CK_
5 1 2 4 syl2anc φCK_
6 faccl K0K!
7 2 6 syl φK!
8 7 nncnd φK!
9 7 nnne0d φK!0
10 5 8 9 divcld φCK_K!
11 3 10 eqeltrd φCC𝑐K