Step |
Hyp |
Ref |
Expression |
1 |
|
bccval.c |
|- ( ph -> C e. CC ) |
2 |
|
bccval.k |
|- ( ph -> K e. NN0 ) |
3 |
1 2
|
bccval |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
4 |
|
fallfaccl |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac K ) e. CC ) |
5 |
1 2 4
|
syl2anc |
|- ( ph -> ( C FallFac K ) e. CC ) |
6 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
7 |
2 6
|
syl |
|- ( ph -> ( ! ` K ) e. NN ) |
8 |
7
|
nncnd |
|- ( ph -> ( ! ` K ) e. CC ) |
9 |
7
|
nnne0d |
|- ( ph -> ( ! ` K ) =/= 0 ) |
10 |
5 8 9
|
divcld |
|- ( ph -> ( ( C FallFac K ) / ( ! ` K ) ) e. CC ) |
11 |
3 10
|
eqeltrd |
|- ( ph -> ( C _Cc K ) e. CC ) |