| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bccval.c |
|- ( ph -> C e. CC ) |
| 2 |
|
bccval.k |
|- ( ph -> K e. NN0 ) |
| 3 |
1 2
|
bccval |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
| 4 |
3
|
eqeq1d |
|- ( ph -> ( ( C _Cc K ) = 0 <-> ( ( C FallFac K ) / ( ! ` K ) ) = 0 ) ) |
| 5 |
|
fallfaccl |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac K ) e. CC ) |
| 6 |
1 2 5
|
syl2anc |
|- ( ph -> ( C FallFac K ) e. CC ) |
| 7 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( ! ` K ) e. NN ) |
| 9 |
8
|
nncnd |
|- ( ph -> ( ! ` K ) e. CC ) |
| 10 |
|
facne0 |
|- ( K e. NN0 -> ( ! ` K ) =/= 0 ) |
| 11 |
2 10
|
syl |
|- ( ph -> ( ! ` K ) =/= 0 ) |
| 12 |
6 9 11
|
diveq0ad |
|- ( ph -> ( ( ( C FallFac K ) / ( ! ` K ) ) = 0 <-> ( C FallFac K ) = 0 ) ) |
| 13 |
|
fallfacval |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac K ) = prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) ) |
| 14 |
1 2 13
|
syl2anc |
|- ( ph -> ( C FallFac K ) = prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) ) |
| 15 |
14
|
eqeq1d |
|- ( ph -> ( ( C FallFac K ) = 0 <-> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) = 0 ) ) |
| 16 |
|
elfzuz3 |
|- ( C e. ( 0 ... ( K - 1 ) ) -> ( K - 1 ) e. ( ZZ>= ` C ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) -> ( K - 1 ) e. ( ZZ>= ` C ) ) |
| 18 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 19 |
|
elfznn0 |
|- ( C e. ( 0 ... ( K - 1 ) ) -> C e. NN0 ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) -> C e. NN0 ) |
| 21 |
1
|
ad2antrr |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ k e. NN0 ) -> C e. CC ) |
| 22 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ k e. NN0 ) -> k e. CC ) |
| 24 |
21 23
|
subcld |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ k e. NN0 ) -> ( C - k ) e. CC ) |
| 25 |
1
|
ad2antrr |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ k = C ) -> C e. CC ) |
| 26 |
|
eqcom |
|- ( k = C <-> C = k ) |
| 27 |
26
|
biimpi |
|- ( k = C -> C = k ) |
| 28 |
27
|
adantl |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ k = C ) -> C = k ) |
| 29 |
25 28
|
subeq0bd |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ k = C ) -> ( C - k ) = 0 ) |
| 30 |
18 20 24 29
|
fprodeq0 |
|- ( ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) /\ ( K - 1 ) e. ( ZZ>= ` C ) ) -> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) = 0 ) |
| 31 |
17 30
|
mpdan |
|- ( ( ph /\ C e. ( 0 ... ( K - 1 ) ) ) -> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) = 0 ) |
| 32 |
31
|
ex |
|- ( ph -> ( C e. ( 0 ... ( K - 1 ) ) -> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) = 0 ) ) |
| 33 |
|
fzfid |
|- ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) -> ( 0 ... ( K - 1 ) ) e. Fin ) |
| 34 |
1
|
ad2antrr |
|- ( ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) /\ k e. ( 0 ... ( K - 1 ) ) ) -> C e. CC ) |
| 35 |
|
elfznn0 |
|- ( k e. ( 0 ... ( K - 1 ) ) -> k e. NN0 ) |
| 36 |
35
|
nn0cnd |
|- ( k e. ( 0 ... ( K - 1 ) ) -> k e. CC ) |
| 37 |
36
|
adantl |
|- ( ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) /\ k e. ( 0 ... ( K - 1 ) ) ) -> k e. CC ) |
| 38 |
34 37
|
subcld |
|- ( ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) /\ k e. ( 0 ... ( K - 1 ) ) ) -> ( C - k ) e. CC ) |
| 39 |
|
nelne2 |
|- ( ( k e. ( 0 ... ( K - 1 ) ) /\ -. C e. ( 0 ... ( K - 1 ) ) ) -> k =/= C ) |
| 40 |
39
|
necomd |
|- ( ( k e. ( 0 ... ( K - 1 ) ) /\ -. C e. ( 0 ... ( K - 1 ) ) ) -> C =/= k ) |
| 41 |
40
|
ancoms |
|- ( ( -. C e. ( 0 ... ( K - 1 ) ) /\ k e. ( 0 ... ( K - 1 ) ) ) -> C =/= k ) |
| 42 |
41
|
adantll |
|- ( ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) /\ k e. ( 0 ... ( K - 1 ) ) ) -> C =/= k ) |
| 43 |
34 37 42
|
subne0d |
|- ( ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) /\ k e. ( 0 ... ( K - 1 ) ) ) -> ( C - k ) =/= 0 ) |
| 44 |
33 38 43
|
fprodn0 |
|- ( ( ph /\ -. C e. ( 0 ... ( K - 1 ) ) ) -> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) =/= 0 ) |
| 45 |
44
|
ex |
|- ( ph -> ( -. C e. ( 0 ... ( K - 1 ) ) -> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) =/= 0 ) ) |
| 46 |
45
|
necon4bd |
|- ( ph -> ( prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) = 0 -> C e. ( 0 ... ( K - 1 ) ) ) ) |
| 47 |
32 46
|
impbid |
|- ( ph -> ( C e. ( 0 ... ( K - 1 ) ) <-> prod_ k e. ( 0 ... ( K - 1 ) ) ( C - k ) = 0 ) ) |
| 48 |
15 47
|
bitr4d |
|- ( ph -> ( ( C FallFac K ) = 0 <-> C e. ( 0 ... ( K - 1 ) ) ) ) |
| 49 |
4 12 48
|
3bitrd |
|- ( ph -> ( ( C _Cc K ) = 0 <-> C e. ( 0 ... ( K - 1 ) ) ) ) |