Step |
Hyp |
Ref |
Expression |
1 |
|
bccval.c |
|- ( ph -> C e. CC ) |
2 |
|
bccval.k |
|- ( ph -> K e. NN0 ) |
3 |
|
fallfacp1 |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac ( K + 1 ) ) = ( ( C FallFac K ) x. ( C - K ) ) ) |
4 |
1 2 3
|
syl2anc |
|- ( ph -> ( C FallFac ( K + 1 ) ) = ( ( C FallFac K ) x. ( C - K ) ) ) |
5 |
|
facp1 |
|- ( K e. NN0 -> ( ! ` ( K + 1 ) ) = ( ( ! ` K ) x. ( K + 1 ) ) ) |
6 |
2 5
|
syl |
|- ( ph -> ( ! ` ( K + 1 ) ) = ( ( ! ` K ) x. ( K + 1 ) ) ) |
7 |
4 6
|
oveq12d |
|- ( ph -> ( ( C FallFac ( K + 1 ) ) / ( ! ` ( K + 1 ) ) ) = ( ( ( C FallFac K ) x. ( C - K ) ) / ( ( ! ` K ) x. ( K + 1 ) ) ) ) |
8 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
9 |
2 8
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
10 |
1 9
|
bccval |
|- ( ph -> ( C _Cc ( K + 1 ) ) = ( ( C FallFac ( K + 1 ) ) / ( ! ` ( K + 1 ) ) ) ) |
11 |
|
fallfaccl |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac K ) e. CC ) |
12 |
1 2 11
|
syl2anc |
|- ( ph -> ( C FallFac K ) e. CC ) |
13 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
14 |
2 13
|
syl |
|- ( ph -> ( ! ` K ) e. NN ) |
15 |
14
|
nncnd |
|- ( ph -> ( ! ` K ) e. CC ) |
16 |
2
|
nn0cnd |
|- ( ph -> K e. CC ) |
17 |
1 16
|
subcld |
|- ( ph -> ( C - K ) e. CC ) |
18 |
9
|
nn0cnd |
|- ( ph -> ( K + 1 ) e. CC ) |
19 |
14
|
nnne0d |
|- ( ph -> ( ! ` K ) =/= 0 ) |
20 |
|
nn0p1nn |
|- ( K e. NN0 -> ( K + 1 ) e. NN ) |
21 |
2 20
|
syl |
|- ( ph -> ( K + 1 ) e. NN ) |
22 |
21
|
nnne0d |
|- ( ph -> ( K + 1 ) =/= 0 ) |
23 |
12 15 17 18 19 22
|
divmuldivd |
|- ( ph -> ( ( ( C FallFac K ) / ( ! ` K ) ) x. ( ( C - K ) / ( K + 1 ) ) ) = ( ( ( C FallFac K ) x. ( C - K ) ) / ( ( ! ` K ) x. ( K + 1 ) ) ) ) |
24 |
7 10 23
|
3eqtr4d |
|- ( ph -> ( C _Cc ( K + 1 ) ) = ( ( ( C FallFac K ) / ( ! ` K ) ) x. ( ( C - K ) / ( K + 1 ) ) ) ) |
25 |
1 2
|
bccval |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
26 |
25
|
oveq1d |
|- ( ph -> ( ( C _Cc K ) x. ( ( C - K ) / ( K + 1 ) ) ) = ( ( ( C FallFac K ) / ( ! ` K ) ) x. ( ( C - K ) / ( K + 1 ) ) ) ) |
27 |
24 26
|
eqtr4d |
|- ( ph -> ( C _Cc ( K + 1 ) ) = ( ( C _Cc K ) x. ( ( C - K ) / ( K + 1 ) ) ) ) |