| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bccval.c |
|- ( ph -> C e. CC ) |
| 2 |
|
bccval.k |
|- ( ph -> K e. NN0 ) |
| 3 |
|
fallfacp1 |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac ( K + 1 ) ) = ( ( C FallFac K ) x. ( C - K ) ) ) |
| 4 |
1 2 3
|
syl2anc |
|- ( ph -> ( C FallFac ( K + 1 ) ) = ( ( C FallFac K ) x. ( C - K ) ) ) |
| 5 |
|
facp1 |
|- ( K e. NN0 -> ( ! ` ( K + 1 ) ) = ( ( ! ` K ) x. ( K + 1 ) ) ) |
| 6 |
2 5
|
syl |
|- ( ph -> ( ! ` ( K + 1 ) ) = ( ( ! ` K ) x. ( K + 1 ) ) ) |
| 7 |
4 6
|
oveq12d |
|- ( ph -> ( ( C FallFac ( K + 1 ) ) / ( ! ` ( K + 1 ) ) ) = ( ( ( C FallFac K ) x. ( C - K ) ) / ( ( ! ` K ) x. ( K + 1 ) ) ) ) |
| 8 |
|
peano2nn0 |
|- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
| 9 |
2 8
|
syl |
|- ( ph -> ( K + 1 ) e. NN0 ) |
| 10 |
1 9
|
bccval |
|- ( ph -> ( C _Cc ( K + 1 ) ) = ( ( C FallFac ( K + 1 ) ) / ( ! ` ( K + 1 ) ) ) ) |
| 11 |
|
fallfaccl |
|- ( ( C e. CC /\ K e. NN0 ) -> ( C FallFac K ) e. CC ) |
| 12 |
1 2 11
|
syl2anc |
|- ( ph -> ( C FallFac K ) e. CC ) |
| 13 |
|
faccl |
|- ( K e. NN0 -> ( ! ` K ) e. NN ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( ! ` K ) e. NN ) |
| 15 |
14
|
nncnd |
|- ( ph -> ( ! ` K ) e. CC ) |
| 16 |
2
|
nn0cnd |
|- ( ph -> K e. CC ) |
| 17 |
1 16
|
subcld |
|- ( ph -> ( C - K ) e. CC ) |
| 18 |
9
|
nn0cnd |
|- ( ph -> ( K + 1 ) e. CC ) |
| 19 |
14
|
nnne0d |
|- ( ph -> ( ! ` K ) =/= 0 ) |
| 20 |
|
nn0p1nn |
|- ( K e. NN0 -> ( K + 1 ) e. NN ) |
| 21 |
2 20
|
syl |
|- ( ph -> ( K + 1 ) e. NN ) |
| 22 |
21
|
nnne0d |
|- ( ph -> ( K + 1 ) =/= 0 ) |
| 23 |
12 15 17 18 19 22
|
divmuldivd |
|- ( ph -> ( ( ( C FallFac K ) / ( ! ` K ) ) x. ( ( C - K ) / ( K + 1 ) ) ) = ( ( ( C FallFac K ) x. ( C - K ) ) / ( ( ! ` K ) x. ( K + 1 ) ) ) ) |
| 24 |
7 10 23
|
3eqtr4d |
|- ( ph -> ( C _Cc ( K + 1 ) ) = ( ( ( C FallFac K ) / ( ! ` K ) ) x. ( ( C - K ) / ( K + 1 ) ) ) ) |
| 25 |
1 2
|
bccval |
|- ( ph -> ( C _Cc K ) = ( ( C FallFac K ) / ( ! ` K ) ) ) |
| 26 |
25
|
oveq1d |
|- ( ph -> ( ( C _Cc K ) x. ( ( C - K ) / ( K + 1 ) ) ) = ( ( ( C FallFac K ) / ( ! ` K ) ) x. ( ( C - K ) / ( K + 1 ) ) ) ) |
| 27 |
24 26
|
eqtr4d |
|- ( ph -> ( C _Cc ( K + 1 ) ) = ( ( C _Cc K ) x. ( ( C - K ) / ( K + 1 ) ) ) ) |