Metamath Proof Explorer


Theorem bccp1k

Description: Generalized binomial coefficient: C choose ( K + 1 ) . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φ C
bccval.k φ K 0
Assertion bccp1k φ C C 𝑐 K + 1 = C C 𝑐 K C K K + 1

Proof

Step Hyp Ref Expression
1 bccval.c φ C
2 bccval.k φ K 0
3 fallfacp1 C K 0 C K + 1 _ = C K _ C K
4 1 2 3 syl2anc φ C K + 1 _ = C K _ C K
5 facp1 K 0 K + 1 ! = K ! K + 1
6 2 5 syl φ K + 1 ! = K ! K + 1
7 4 6 oveq12d φ C K + 1 _ K + 1 ! = C K _ C K K ! K + 1
8 peano2nn0 K 0 K + 1 0
9 2 8 syl φ K + 1 0
10 1 9 bccval φ C C 𝑐 K + 1 = C K + 1 _ K + 1 !
11 fallfaccl C K 0 C K _
12 1 2 11 syl2anc φ C K _
13 faccl K 0 K !
14 2 13 syl φ K !
15 14 nncnd φ K !
16 2 nn0cnd φ K
17 1 16 subcld φ C K
18 9 nn0cnd φ K + 1
19 14 nnne0d φ K ! 0
20 nn0p1nn K 0 K + 1
21 2 20 syl φ K + 1
22 21 nnne0d φ K + 1 0
23 12 15 17 18 19 22 divmuldivd φ C K _ K ! C K K + 1 = C K _ C K K ! K + 1
24 7 10 23 3eqtr4d φ C C 𝑐 K + 1 = C K _ K ! C K K + 1
25 1 2 bccval φ C C 𝑐 K = C K _ K !
26 25 oveq1d φ C C 𝑐 K C K K + 1 = C K _ K ! C K K + 1
27 24 26 eqtr4d φ C C 𝑐 K + 1 = C C 𝑐 K C K K + 1