Metamath Proof Explorer


Theorem fallfacp1

Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfacp1 AN0AN+1_=AN_AN

Proof

Step Hyp Ref Expression
1 nn0cn N0N
2 1 adantl AN0N
3 1cnd AN01
4 2 3 pncand AN0N+1-1=N
5 4 oveq2d AN00N+1-1=0N
6 5 prodeq1d AN0k=0N+1-1Ak=k=0NAk
7 elnn0uz N0N0
8 7 biimpi N0N0
9 8 adantl AN0N0
10 elfznn0 k0Nk0
11 10 nn0cnd k0Nk
12 subcl AkAk
13 11 12 sylan2 Ak0NAk
14 13 adantlr AN0k0NAk
15 oveq2 k=NAk=AN
16 9 14 15 fprodm1 AN0k=0NAk=k=0N1AkAN
17 6 16 eqtrd AN0k=0N+1-1Ak=k=0N1AkAN
18 peano2nn0 N0N+10
19 fallfacval AN+10AN+1_=k=0N+1-1Ak
20 18 19 sylan2 AN0AN+1_=k=0N+1-1Ak
21 fallfacval AN0AN_=k=0N1Ak
22 21 oveq1d AN0AN_AN=k=0N1AkAN
23 17 20 22 3eqtr4d AN0AN+1_=AN_AN