Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodm1.1 | |
|
fprodm1.2 | |
||
fprodm1.3 | |
||
Assertion | fprodm1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodm1.1 | |
|
2 | fprodm1.2 | |
|
3 | fprodm1.3 | |
|
4 | fzp1nel | |
|
5 | eluzelz | |
|
6 | 1 5 | syl | |
7 | 6 | zcnd | |
8 | 1cnd | |
|
9 | 7 8 | npcand | |
10 | 9 | eleq1d | |
11 | 4 10 | mtbii | |
12 | disjsn | |
|
13 | 11 12 | sylibr | |
14 | eluzel2 | |
|
15 | 1 14 | syl | |
16 | peano2zm | |
|
17 | 15 16 | syl | |
18 | 15 | zcnd | |
19 | 18 8 | npcand | |
20 | 19 | fveq2d | |
21 | 1 20 | eleqtrrd | |
22 | eluzp1m1 | |
|
23 | 17 21 22 | syl2anc | |
24 | fzsuc2 | |
|
25 | 15 23 24 | syl2anc | |
26 | 9 | oveq2d | |
27 | 9 | sneqd | |
28 | 27 | uneq2d | |
29 | 25 26 28 | 3eqtr3d | |
30 | fzfid | |
|
31 | 13 29 30 2 | fprodsplit | |
32 | 3 | eleq1d | |
33 | 2 | ralrimiva | |
34 | eluzfz2 | |
|
35 | 1 34 | syl | |
36 | 32 33 35 | rspcdva | |
37 | 3 | prodsn | |
38 | 1 36 37 | syl2anc | |
39 | 38 | oveq2d | |
40 | 31 39 | eqtrd | |