Metamath Proof Explorer


Theorem fprodm1

Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses fprodm1.1 φNM
fprodm1.2 φkMNA
fprodm1.3 k=NA=B
Assertion fprodm1 φk=MNA=k=MN1AB

Proof

Step Hyp Ref Expression
1 fprodm1.1 φNM
2 fprodm1.2 φkMNA
3 fprodm1.3 k=NA=B
4 fzp1nel ¬N-1+1MN1
5 eluzelz NMN
6 1 5 syl φN
7 6 zcnd φN
8 1cnd φ1
9 7 8 npcand φN-1+1=N
10 9 eleq1d φN-1+1MN1NMN1
11 4 10 mtbii φ¬NMN1
12 disjsn MN1N=¬NMN1
13 11 12 sylibr φMN1N=
14 eluzel2 NMM
15 1 14 syl φM
16 peano2zm MM1
17 15 16 syl φM1
18 15 zcnd φM
19 18 8 npcand φM-1+1=M
20 19 fveq2d φM-1+1=M
21 1 20 eleqtrrd φNM-1+1
22 eluzp1m1 M1NM-1+1N1M1
23 17 21 22 syl2anc φN1M1
24 fzsuc2 MN1M1MN-1+1=MN1N-1+1
25 15 23 24 syl2anc φMN-1+1=MN1N-1+1
26 9 oveq2d φMN-1+1=MN
27 9 sneqd φN-1+1=N
28 27 uneq2d φMN1N-1+1=MN1N
29 25 26 28 3eqtr3d φMN=MN1N
30 fzfid φMNFin
31 13 29 30 2 fprodsplit φk=MNA=k=MN1AkNA
32 3 eleq1d k=NAB
33 2 ralrimiva φkMNA
34 eluzfz2 NMNMN
35 1 34 syl φNMN
36 32 33 35 rspcdva φB
37 3 prodsn NMBkNA=B
38 1 36 37 syl2anc φkNA=B
39 38 oveq2d φk=MN1AkNA=k=MN1AB
40 31 39 eqtrd φk=MNA=k=MN1AB