Metamath Proof Explorer


Theorem bccm1k

Description: Generalized binomial coefficient: C choose ( K - 1 ) , when C is not ( K - 1 ) . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccm1k.c φ C K 1
bccm1k.k φ K
Assertion bccm1k φ C C 𝑐 K 1 = C C 𝑐 K C K 1 K

Proof

Step Hyp Ref Expression
1 bccm1k.c φ C K 1
2 bccm1k.k φ K
3 1 eldifad φ C
4 2 nncnd φ K
5 1cnd φ 1
6 4 5 subcld φ K 1
7 3 6 subcld φ C K 1
8 2 nnne0d φ K 0
9 7 4 8 divcld φ C K 1 K
10 nnm1nn0 K K 1 0
11 2 10 syl φ K 1 0
12 3 11 bcccl φ C C 𝑐 K 1
13 eldifsni C K 1 C K 1
14 1 13 syl φ C K 1
15 3 6 14 subne0d φ C K 1 0
16 7 4 15 8 divne0d φ C K 1 K 0
17 3 11 bccp1k φ C C 𝑐 K - 1 + 1 = C C 𝑐 K 1 C K 1 K - 1 + 1
18 4 5 npcand φ K - 1 + 1 = K
19 18 oveq2d φ C C 𝑐 K - 1 + 1 = C C 𝑐 K
20 18 oveq2d φ C K 1 K - 1 + 1 = C K 1 K
21 20 oveq2d φ C C 𝑐 K 1 C K 1 K - 1 + 1 = C C 𝑐 K 1 C K 1 K
22 17 19 21 3eqtr3d φ C C 𝑐 K = C C 𝑐 K 1 C K 1 K
23 12 9 mulcomd φ C C 𝑐 K 1 C K 1 K = C K 1 K C C 𝑐 K 1
24 22 23 eqtr2d φ C K 1 K C C 𝑐 K 1 = C C 𝑐 K
25 9 12 16 24 mvllmuld φ C C 𝑐 K 1 = C C 𝑐 K C K 1 K