Step |
Hyp |
Ref |
Expression |
1 |
|
bccm1k.c |
|- ( ph -> C e. ( CC \ { ( K - 1 ) } ) ) |
2 |
|
bccm1k.k |
|- ( ph -> K e. NN ) |
3 |
1
|
eldifad |
|- ( ph -> C e. CC ) |
4 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
5 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
6 |
4 5
|
subcld |
|- ( ph -> ( K - 1 ) e. CC ) |
7 |
3 6
|
subcld |
|- ( ph -> ( C - ( K - 1 ) ) e. CC ) |
8 |
2
|
nnne0d |
|- ( ph -> K =/= 0 ) |
9 |
7 4 8
|
divcld |
|- ( ph -> ( ( C - ( K - 1 ) ) / K ) e. CC ) |
10 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
11 |
2 10
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
12 |
3 11
|
bcccl |
|- ( ph -> ( C _Cc ( K - 1 ) ) e. CC ) |
13 |
|
eldifsni |
|- ( C e. ( CC \ { ( K - 1 ) } ) -> C =/= ( K - 1 ) ) |
14 |
1 13
|
syl |
|- ( ph -> C =/= ( K - 1 ) ) |
15 |
3 6 14
|
subne0d |
|- ( ph -> ( C - ( K - 1 ) ) =/= 0 ) |
16 |
7 4 15 8
|
divne0d |
|- ( ph -> ( ( C - ( K - 1 ) ) / K ) =/= 0 ) |
17 |
3 11
|
bccp1k |
|- ( ph -> ( C _Cc ( ( K - 1 ) + 1 ) ) = ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / ( ( K - 1 ) + 1 ) ) ) ) |
18 |
4 5
|
npcand |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
19 |
18
|
oveq2d |
|- ( ph -> ( C _Cc ( ( K - 1 ) + 1 ) ) = ( C _Cc K ) ) |
20 |
18
|
oveq2d |
|- ( ph -> ( ( C - ( K - 1 ) ) / ( ( K - 1 ) + 1 ) ) = ( ( C - ( K - 1 ) ) / K ) ) |
21 |
20
|
oveq2d |
|- ( ph -> ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / ( ( K - 1 ) + 1 ) ) ) = ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / K ) ) ) |
22 |
17 19 21
|
3eqtr3d |
|- ( ph -> ( C _Cc K ) = ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / K ) ) ) |
23 |
12 9
|
mulcomd |
|- ( ph -> ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / K ) ) = ( ( ( C - ( K - 1 ) ) / K ) x. ( C _Cc ( K - 1 ) ) ) ) |
24 |
22 23
|
eqtr2d |
|- ( ph -> ( ( ( C - ( K - 1 ) ) / K ) x. ( C _Cc ( K - 1 ) ) ) = ( C _Cc K ) ) |
25 |
9 12 16 24
|
mvllmuld |
|- ( ph -> ( C _Cc ( K - 1 ) ) = ( ( C _Cc K ) / ( ( C - ( K - 1 ) ) / K ) ) ) |