| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bccm1k.c |
|- ( ph -> C e. ( CC \ { ( K - 1 ) } ) ) |
| 2 |
|
bccm1k.k |
|- ( ph -> K e. NN ) |
| 3 |
1
|
eldifad |
|- ( ph -> C e. CC ) |
| 4 |
2
|
nncnd |
|- ( ph -> K e. CC ) |
| 5 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 6 |
4 5
|
subcld |
|- ( ph -> ( K - 1 ) e. CC ) |
| 7 |
3 6
|
subcld |
|- ( ph -> ( C - ( K - 1 ) ) e. CC ) |
| 8 |
2
|
nnne0d |
|- ( ph -> K =/= 0 ) |
| 9 |
7 4 8
|
divcld |
|- ( ph -> ( ( C - ( K - 1 ) ) / K ) e. CC ) |
| 10 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
| 11 |
2 10
|
syl |
|- ( ph -> ( K - 1 ) e. NN0 ) |
| 12 |
3 11
|
bcccl |
|- ( ph -> ( C _Cc ( K - 1 ) ) e. CC ) |
| 13 |
|
eldifsni |
|- ( C e. ( CC \ { ( K - 1 ) } ) -> C =/= ( K - 1 ) ) |
| 14 |
1 13
|
syl |
|- ( ph -> C =/= ( K - 1 ) ) |
| 15 |
3 6 14
|
subne0d |
|- ( ph -> ( C - ( K - 1 ) ) =/= 0 ) |
| 16 |
7 4 15 8
|
divne0d |
|- ( ph -> ( ( C - ( K - 1 ) ) / K ) =/= 0 ) |
| 17 |
3 11
|
bccp1k |
|- ( ph -> ( C _Cc ( ( K - 1 ) + 1 ) ) = ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / ( ( K - 1 ) + 1 ) ) ) ) |
| 18 |
4 5
|
npcand |
|- ( ph -> ( ( K - 1 ) + 1 ) = K ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( C _Cc ( ( K - 1 ) + 1 ) ) = ( C _Cc K ) ) |
| 20 |
18
|
oveq2d |
|- ( ph -> ( ( C - ( K - 1 ) ) / ( ( K - 1 ) + 1 ) ) = ( ( C - ( K - 1 ) ) / K ) ) |
| 21 |
20
|
oveq2d |
|- ( ph -> ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / ( ( K - 1 ) + 1 ) ) ) = ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / K ) ) ) |
| 22 |
17 19 21
|
3eqtr3d |
|- ( ph -> ( C _Cc K ) = ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / K ) ) ) |
| 23 |
12 9
|
mulcomd |
|- ( ph -> ( ( C _Cc ( K - 1 ) ) x. ( ( C - ( K - 1 ) ) / K ) ) = ( ( ( C - ( K - 1 ) ) / K ) x. ( C _Cc ( K - 1 ) ) ) ) |
| 24 |
22 23
|
eqtr2d |
|- ( ph -> ( ( ( C - ( K - 1 ) ) / K ) x. ( C _Cc ( K - 1 ) ) ) = ( C _Cc K ) ) |
| 25 |
9 12 16 24
|
mvllmuld |
|- ( ph -> ( C _Cc ( K - 1 ) ) = ( ( C _Cc K ) / ( ( C - ( K - 1 ) ) / K ) ) ) |