Step |
Hyp |
Ref |
Expression |
1 |
|
bccn0.c |
|- ( ph -> C e. CC ) |
2 |
|
0nn0 |
|- 0 e. NN0 |
3 |
2
|
a1i |
|- ( ph -> 0 e. NN0 ) |
4 |
1 3
|
bccval |
|- ( ph -> ( C _Cc 0 ) = ( ( C FallFac 0 ) / ( ! ` 0 ) ) ) |
5 |
|
fallfac0 |
|- ( C e. CC -> ( C FallFac 0 ) = 1 ) |
6 |
1 5
|
syl |
|- ( ph -> ( C FallFac 0 ) = 1 ) |
7 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
8 |
7
|
a1i |
|- ( ph -> ( ! ` 0 ) = 1 ) |
9 |
6 8
|
oveq12d |
|- ( ph -> ( ( C FallFac 0 ) / ( ! ` 0 ) ) = ( 1 / 1 ) ) |
10 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
11 |
9 10
|
eqtrdi |
|- ( ph -> ( ( C FallFac 0 ) / ( ! ` 0 ) ) = 1 ) |
12 |
4 11
|
eqtrd |
|- ( ph -> ( C _Cc 0 ) = 1 ) |