Metamath Proof Explorer


Theorem bccn0

Description: Generalized binomial coefficient: C choose 0 . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypothesis bccn0.c ( 𝜑𝐶 ∈ ℂ )
Assertion bccn0 ( 𝜑 → ( 𝐶 C𝑐 0 ) = 1 )

Proof

Step Hyp Ref Expression
1 bccn0.c ( 𝜑𝐶 ∈ ℂ )
2 0nn0 0 ∈ ℕ0
3 2 a1i ( 𝜑 → 0 ∈ ℕ0 )
4 1 3 bccval ( 𝜑 → ( 𝐶 C𝑐 0 ) = ( ( 𝐶 FallFac 0 ) / ( ! ‘ 0 ) ) )
5 fallfac0 ( 𝐶 ∈ ℂ → ( 𝐶 FallFac 0 ) = 1 )
6 1 5 syl ( 𝜑 → ( 𝐶 FallFac 0 ) = 1 )
7 fac0 ( ! ‘ 0 ) = 1
8 7 a1i ( 𝜑 → ( ! ‘ 0 ) = 1 )
9 6 8 oveq12d ( 𝜑 → ( ( 𝐶 FallFac 0 ) / ( ! ‘ 0 ) ) = ( 1 / 1 ) )
10 1div1e1 ( 1 / 1 ) = 1
11 9 10 eqtrdi ( 𝜑 → ( ( 𝐶 FallFac 0 ) / ( ! ‘ 0 ) ) = 1 )
12 4 11 eqtrd ( 𝜑 → ( 𝐶 C𝑐 0 ) = 1 )