Metamath Proof Explorer


Theorem bccn1

Description: Generalized binomial coefficient: C choose 1 . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypothesis bccn0.c ( 𝜑𝐶 ∈ ℂ )
Assertion bccn1 ( 𝜑 → ( 𝐶 C𝑐 1 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 bccn0.c ( 𝜑𝐶 ∈ ℂ )
2 0nn0 0 ∈ ℕ0
3 2 a1i ( 𝜑 → 0 ∈ ℕ0 )
4 1 3 bccp1k ( 𝜑 → ( 𝐶 C𝑐 ( 0 + 1 ) ) = ( ( 𝐶 C𝑐 0 ) · ( ( 𝐶 − 0 ) / ( 0 + 1 ) ) ) )
5 0p1e1 ( 0 + 1 ) = 1
6 5 oveq2i ( 𝐶 C𝑐 ( 0 + 1 ) ) = ( 𝐶 C𝑐 1 )
7 6 a1i ( 𝜑 → ( 𝐶 C𝑐 ( 0 + 1 ) ) = ( 𝐶 C𝑐 1 ) )
8 1 bccn0 ( 𝜑 → ( 𝐶 C𝑐 0 ) = 1 )
9 1 subid1d ( 𝜑 → ( 𝐶 − 0 ) = 𝐶 )
10 5 a1i ( 𝜑 → ( 0 + 1 ) = 1 )
11 9 10 oveq12d ( 𝜑 → ( ( 𝐶 − 0 ) / ( 0 + 1 ) ) = ( 𝐶 / 1 ) )
12 1 div1d ( 𝜑 → ( 𝐶 / 1 ) = 𝐶 )
13 11 12 eqtrd ( 𝜑 → ( ( 𝐶 − 0 ) / ( 0 + 1 ) ) = 𝐶 )
14 8 13 oveq12d ( 𝜑 → ( ( 𝐶 C𝑐 0 ) · ( ( 𝐶 − 0 ) / ( 0 + 1 ) ) ) = ( 1 · 𝐶 ) )
15 4 7 14 3eqtr3d ( 𝜑 → ( 𝐶 C𝑐 1 ) = ( 1 · 𝐶 ) )
16 1 mulid2d ( 𝜑 → ( 1 · 𝐶 ) = 𝐶 )
17 15 16 eqtrd ( 𝜑 → ( 𝐶 C𝑐 1 ) = 𝐶 )