Metamath Proof Explorer


Theorem bccn1

Description: Generalized binomial coefficient: C choose 1 . (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypothesis bccn0.c φ C
Assertion bccn1 φ C C 𝑐 1 = C

Proof

Step Hyp Ref Expression
1 bccn0.c φ C
2 0nn0 0 0
3 2 a1i φ 0 0
4 1 3 bccp1k φ C C 𝑐 0 + 1 = C C 𝑐 0 C 0 0 + 1
5 0p1e1 0 + 1 = 1
6 5 oveq2i C C 𝑐 0 + 1 = C C 𝑐 1
7 6 a1i φ C C 𝑐 0 + 1 = C C 𝑐 1
8 1 bccn0 φ C C 𝑐 0 = 1
9 1 subid1d φ C 0 = C
10 5 a1i φ 0 + 1 = 1
11 9 10 oveq12d φ C 0 0 + 1 = C 1
12 1 div1d φ C 1 = C
13 11 12 eqtrd φ C 0 0 + 1 = C
14 8 13 oveq12d φ C C 𝑐 0 C 0 0 + 1 = 1 C
15 4 7 14 3eqtr3d φ C C 𝑐 1 = 1 C
16 1 mulid2d φ 1 C = C
17 15 16 eqtrd φ C C 𝑐 1 = C