Metamath Proof Explorer


Theorem bcc0

Description: The generalized binomial coefficient C choose K is zero iff C is an integer between zero and ( K - 1 ) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c φ C
bccval.k φ K 0
Assertion bcc0 φ C C 𝑐 K = 0 C 0 K 1

Proof

Step Hyp Ref Expression
1 bccval.c φ C
2 bccval.k φ K 0
3 1 2 bccval φ C C 𝑐 K = C K _ K !
4 3 eqeq1d φ C C 𝑐 K = 0 C K _ K ! = 0
5 fallfaccl C K 0 C K _
6 1 2 5 syl2anc φ C K _
7 faccl K 0 K !
8 2 7 syl φ K !
9 8 nncnd φ K !
10 facne0 K 0 K ! 0
11 2 10 syl φ K ! 0
12 6 9 11 diveq0ad φ C K _ K ! = 0 C K _ = 0
13 fallfacval C K 0 C K _ = k = 0 K 1 C k
14 1 2 13 syl2anc φ C K _ = k = 0 K 1 C k
15 14 eqeq1d φ C K _ = 0 k = 0 K 1 C k = 0
16 elfzuz3 C 0 K 1 K 1 C
17 16 adantl φ C 0 K 1 K 1 C
18 nn0uz 0 = 0
19 elfznn0 C 0 K 1 C 0
20 19 adantl φ C 0 K 1 C 0
21 1 ad2antrr φ C 0 K 1 k 0 C
22 nn0cn k 0 k
23 22 adantl φ C 0 K 1 k 0 k
24 21 23 subcld φ C 0 K 1 k 0 C k
25 1 ad2antrr φ C 0 K 1 k = C C
26 eqcom k = C C = k
27 26 biimpi k = C C = k
28 27 adantl φ C 0 K 1 k = C C = k
29 25 28 subeq0bd φ C 0 K 1 k = C C k = 0
30 18 20 24 29 fprodeq0 φ C 0 K 1 K 1 C k = 0 K 1 C k = 0
31 17 30 mpdan φ C 0 K 1 k = 0 K 1 C k = 0
32 31 ex φ C 0 K 1 k = 0 K 1 C k = 0
33 fzfid φ ¬ C 0 K 1 0 K 1 Fin
34 1 ad2antrr φ ¬ C 0 K 1 k 0 K 1 C
35 elfznn0 k 0 K 1 k 0
36 35 nn0cnd k 0 K 1 k
37 36 adantl φ ¬ C 0 K 1 k 0 K 1 k
38 34 37 subcld φ ¬ C 0 K 1 k 0 K 1 C k
39 nelne2 k 0 K 1 ¬ C 0 K 1 k C
40 39 necomd k 0 K 1 ¬ C 0 K 1 C k
41 40 ancoms ¬ C 0 K 1 k 0 K 1 C k
42 41 adantll φ ¬ C 0 K 1 k 0 K 1 C k
43 34 37 42 subne0d φ ¬ C 0 K 1 k 0 K 1 C k 0
44 33 38 43 fprodn0 φ ¬ C 0 K 1 k = 0 K 1 C k 0
45 44 ex φ ¬ C 0 K 1 k = 0 K 1 C k 0
46 45 necon4bd φ k = 0 K 1 C k = 0 C 0 K 1
47 32 46 impbid φ C 0 K 1 k = 0 K 1 C k = 0
48 15 47 bitr4d φ C K _ = 0 C 0 K 1
49 4 12 48 3bitrd φ C C 𝑐 K = 0 C 0 K 1