Description: Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bccval.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
bccval.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
Assertion | bcccl | ⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccval.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
2 | bccval.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
3 | 1 2 | bccval | ⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |
4 | fallfaccl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐶 FallFac 𝐾 ) ∈ ℂ ) | |
5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 FallFac 𝐾 ) ∈ ℂ ) |
6 | faccl | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) | |
7 | 2 6 | syl | ⊢ ( 𝜑 → ( ! ‘ 𝐾 ) ∈ ℕ ) |
8 | 7 | nncnd | ⊢ ( 𝜑 → ( ! ‘ 𝐾 ) ∈ ℂ ) |
9 | 7 | nnne0d | ⊢ ( 𝜑 → ( ! ‘ 𝐾 ) ≠ 0 ) |
10 | 5 8 9 | divcld | ⊢ ( 𝜑 → ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ ) |
11 | 3 10 | eqeltrd | ⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) ∈ ℂ ) |