Metamath Proof Explorer


Theorem bcccl

Description: Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses bccval.c ( 𝜑𝐶 ∈ ℂ )
bccval.k ( 𝜑𝐾 ∈ ℕ0 )
Assertion bcccl ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 bccval.c ( 𝜑𝐶 ∈ ℂ )
2 bccval.k ( 𝜑𝐾 ∈ ℕ0 )
3 1 2 bccval ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) )
4 fallfaccl ( ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐶 FallFac 𝐾 ) ∈ ℂ )
5 1 2 4 syl2anc ( 𝜑 → ( 𝐶 FallFac 𝐾 ) ∈ ℂ )
6 faccl ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ )
7 2 6 syl ( 𝜑 → ( ! ‘ 𝐾 ) ∈ ℕ )
8 7 nncnd ( 𝜑 → ( ! ‘ 𝐾 ) ∈ ℂ )
9 7 nnne0d ( 𝜑 → ( ! ‘ 𝐾 ) ≠ 0 )
10 5 8 9 divcld ( 𝜑 → ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ )
11 3 10 eqeltrd ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) ∈ ℂ )