Description: Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bccval.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| bccval.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
| Assertion | bcccl | ⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bccval.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 2 | bccval.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
| 3 | 1 2 | bccval | ⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) = ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ) |
| 4 | fallfaccl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐶 FallFac 𝐾 ) ∈ ℂ ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 FallFac 𝐾 ) ∈ ℂ ) |
| 6 | faccl | ⊢ ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( ! ‘ 𝐾 ) ∈ ℕ ) |
| 8 | 7 | nncnd | ⊢ ( 𝜑 → ( ! ‘ 𝐾 ) ∈ ℂ ) |
| 9 | 7 | nnne0d | ⊢ ( 𝜑 → ( ! ‘ 𝐾 ) ≠ 0 ) |
| 10 | 5 8 9 | divcld | ⊢ ( 𝜑 → ( ( 𝐶 FallFac 𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℂ ) |
| 11 | 3 10 | eqeltrd | ⊢ ( 𝜑 → ( 𝐶 C𝑐 𝐾 ) ∈ ℂ ) |