Description: Closure law for falling factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfaccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ℂ ⊆ ℂ | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 4 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 5 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 − 𝑘 ) ∈ ℂ ) |
| 7 | 1 2 3 6 | fallfaccllem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 FallFac 𝑁 ) ∈ ℂ ) |