Step |
Hyp |
Ref |
Expression |
0 |
|
ccur- |
|- curry_ |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vy |
|- y |
4 |
|
vz |
|- z |
5 |
|
vf |
|- f |
6 |
1
|
cv |
|- x |
7 |
3
|
cv |
|- y |
8 |
6 7
|
cxp |
|- ( x X. y ) |
9 |
|
csethom |
|- -Set-> |
10 |
4
|
cv |
|- z |
11 |
8 10 9
|
co |
|- ( ( x X. y ) -Set-> z ) |
12 |
|
va |
|- a |
13 |
|
vb |
|- b |
14 |
5
|
cv |
|- f |
15 |
12
|
cv |
|- a |
16 |
13
|
cv |
|- b |
17 |
15 16
|
cop |
|- <. a , b >. |
18 |
17 14
|
cfv |
|- ( f ` <. a , b >. ) |
19 |
13 7 18
|
cmpt |
|- ( b e. y |-> ( f ` <. a , b >. ) ) |
20 |
12 6 19
|
cmpt |
|- ( a e. x |-> ( b e. y |-> ( f ` <. a , b >. ) ) ) |
21 |
5 11 20
|
cmpt |
|- ( f e. ( ( x X. y ) -Set-> z ) |-> ( a e. x |-> ( b e. y |-> ( f ` <. a , b >. ) ) ) ) |
22 |
1 3 4 2 2 2 21
|
cmpt3 |
|- ( x e. _V , y e. _V , z e. _V |-> ( f e. ( ( x X. y ) -Set-> z ) |-> ( a e. x |-> ( b e. y |-> ( f ` <. a , b >. ) ) ) ) ) |
23 |
0 22
|
wceq |
|- curry_ = ( x e. _V , y e. _V , z e. _V |-> ( f e. ( ( x X. y ) -Set-> z ) |-> ( a e. x |-> ( b e. y |-> ( f ` <. a , b >. ) ) ) ) ) |