Description: Definition of the divisibility relation (compare df-dvds ).
Since 0 is absorbing, |- ( A e. ( CCbar u. CChat ) -> ( A ||C 0 ) ) and |- ( ( 0 ||C A ) <-> A = 0 ) .
(Contributed by BJ, 28-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-bj-divc | |- ||C = { <. x , y >. | ( <. x , y >. e. ( ( CCbar X. CCbar ) u. ( CChat X. CChat ) ) /\ E. n e. ( ZZbar u. ZZhat ) ( n .cc x ) = y ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cdivc | |- ||C |
|
1 | vx | |- x |
|
2 | vy | |- y |
|
3 | 1 | cv | |- x |
4 | 2 | cv | |- y |
5 | 3 4 | cop | |- <. x , y >. |
6 | cccbar | |- CCbar |
|
7 | 6 6 | cxp | |- ( CCbar X. CCbar ) |
8 | ccchat | |- CChat |
|
9 | 8 8 | cxp | |- ( CChat X. CChat ) |
10 | 7 9 | cun | |- ( ( CCbar X. CCbar ) u. ( CChat X. CChat ) ) |
11 | 5 10 | wcel | |- <. x , y >. e. ( ( CCbar X. CCbar ) u. ( CChat X. CChat ) ) |
12 | vn | |- n |
|
13 | czzbar | |- ZZbar |
|
14 | czzhat | |- ZZhat |
|
15 | 13 14 | cun | |- ( ZZbar u. ZZhat ) |
16 | 12 | cv | |- n |
17 | cmulc | |- .cc |
|
18 | 16 3 17 | co | |- ( n .cc x ) |
19 | 18 4 | wceq | |- ( n .cc x ) = y |
20 | 19 12 15 | wrex | |- E. n e. ( ZZbar u. ZZhat ) ( n .cc x ) = y |
21 | 11 20 | wa | |- ( <. x , y >. e. ( ( CCbar X. CCbar ) u. ( CChat X. CChat ) ) /\ E. n e. ( ZZbar u. ZZhat ) ( n .cc x ) = y ) |
22 | 21 1 2 | copab | |- { <. x , y >. | ( <. x , y >. e. ( ( CCbar X. CCbar ) u. ( CChat X. CChat ) ) /\ E. n e. ( ZZbar u. ZZhat ) ( n .cc x ) = y ) } |
23 | 0 22 | wceq | |- ||C = { <. x , y >. | ( <. x , y >. e. ( ( CCbar X. CCbar ) u. ( CChat X. CChat ) ) /\ E. n e. ( ZZbar u. ZZhat ) ( n .cc x ) = y ) } |