Metamath Proof Explorer


Definition df-bj-divc

Description: Definition of the divisibility relation (compare df-dvds ).

Since 0 is absorbing, |- ( A e. ( CCbar u. CChat ) -> ( A ||C 0 ) ) and |- ( ( 0 ||C A ) <-> A = 0 ) .

(Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion df-bj-divc =xy|xy×^×^n^nx=y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdivc class
1 vx setvarx
2 vy setvary
3 1 cv setvarx
4 2 cv setvary
5 3 4 cop classxy
6 cccbar class
7 6 6 cxp class×
8 ccchat class^
9 8 8 cxp class^×^
10 7 9 cun class×^×^
11 5 10 wcel wffxy×^×^
12 vn setvarn
13 czzbar class
14 czzhat class^
15 13 14 cun class^
16 12 cv setvarn
17 cmulc class
18 16 3 17 co classnx
19 18 4 wceq wffnx=y
20 19 12 15 wrex wffn^nx=y
21 11 20 wa wffxy×^×^n^nx=y
22 21 1 2 copab classxy|xy×^×^n^nx=y
23 0 22 wceq wff=xy|xy×^×^n^nx=y