Metamath Proof Explorer


Definition df-bj-divc

Description: Definition of the divisibility relation (compare df-dvds ).

Since 0 is absorbing, |- ( A e. ( CCbar u. CChat ) -> ( A ||C 0 ) ) and |- ( ( 0 ||C A ) <-> A = 0 ) .

(Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion df-bj-divc = x y | x y × ^ × ^ n ^ n x = y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdivc class
1 vx setvar x
2 vy setvar y
3 1 cv setvar x
4 2 cv setvar y
5 3 4 cop class x y
6 cccbar class
7 6 6 cxp class ×
8 ccchat class ^
9 8 8 cxp class ^ × ^
10 7 9 cun class × ^ × ^
11 5 10 wcel wff x y × ^ × ^
12 vn setvar n
13 czzbar class
14 czzhat class ^
15 13 14 cun class ^
16 12 cv setvar n
17 cmulc class
18 16 3 17 co class n x
19 18 4 wceq wff n x = y
20 19 12 15 wrex wff n ^ n x = y
21 11 20 wa wff x y × ^ × ^ n ^ n x = y
22 21 1 2 copab class x y | x y × ^ × ^ n ^ n x = y
23 0 22 wceq wff = x y | x y × ^ × ^ n ^ n x = y