Metamath Proof Explorer


Definition df-bj-divc

Description: Definition of the divisibility relation (compare df-dvds ).

Since 0 is absorbing, |- ( A e. ( CCbar u. CChat ) -> ( A ||C 0 ) ) and |- ( ( 0 ||C A ) <-> A = 0 ) .

(Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion df-bj-divc = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdivc
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 2 cv 𝑦
5 3 4 cop 𝑥 , 𝑦
6 cccbar ℂ̅
7 6 6 cxp ( ℂ̅ × ℂ̅ )
8 ccchat ℂ̂
9 8 8 cxp ( ℂ̂ × ℂ̂ )
10 7 9 cun ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) )
11 5 10 wcel 𝑥 , 𝑦 ⟩ ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) )
12 vn 𝑛
13 czzbar ℤ̅
14 czzhat ℤ̂
15 13 14 cun ( ℤ̅ ∪ ℤ̂ )
16 12 cv 𝑛
17 cmulc ·ℂ̅
18 16 3 17 co ( 𝑛 ·ℂ̅ 𝑥 )
19 18 4 wceq ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦
20 19 12 15 wrex 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦
21 11 20 wa ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 )
22 21 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) }
23 0 22 wceq = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) }