Description: Definition of the divisibility relation (compare df-dvds ).
Since 0 is absorbing, |- ( A e. ( CCbar u. CChat ) -> ( A ||C 0 ) ) and |- ( ( 0 ||C A ) <-> A = 0 ) .
(Contributed by BJ, 28-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-divc | ⊢ ∥ℂ = { 〈 𝑥 , 𝑦 〉 ∣ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdivc | ⊢ ∥ℂ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | 2 | cv | ⊢ 𝑦 |
| 5 | 3 4 | cop | ⊢ 〈 𝑥 , 𝑦 〉 |
| 6 | cccbar | ⊢ ℂ̅ | |
| 7 | 6 6 | cxp | ⊢ ( ℂ̅ × ℂ̅ ) |
| 8 | ccchat | ⊢ ℂ̂ | |
| 9 | 8 8 | cxp | ⊢ ( ℂ̂ × ℂ̂ ) |
| 10 | 7 9 | cun | ⊢ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) |
| 11 | 5 10 | wcel | ⊢ 〈 𝑥 , 𝑦 〉 ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) |
| 12 | vn | ⊢ 𝑛 | |
| 13 | czzbar | ⊢ ℤ̅ | |
| 14 | czzhat | ⊢ ℤ̂ | |
| 15 | 13 14 | cun | ⊢ ( ℤ̅ ∪ ℤ̂ ) |
| 16 | 12 | cv | ⊢ 𝑛 |
| 17 | cmulc | ⊢ ·ℂ̅ | |
| 18 | 16 3 17 | co | ⊢ ( 𝑛 ·ℂ̅ 𝑥 ) |
| 19 | 18 4 | wceq | ⊢ ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 |
| 20 | 19 12 15 | wrex | ⊢ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 |
| 21 | 11 20 | wa | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) |
| 22 | 21 1 2 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) } |
| 23 | 0 22 | wceq | ⊢ ∥ℂ = { 〈 𝑥 , 𝑦 〉 ∣ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( ℂ̅ × ℂ̅ ) ∪ ( ℂ̂ × ℂ̂ ) ) ∧ ∃ 𝑛 ∈ ( ℤ̅ ∪ ℤ̂ ) ( 𝑛 ·ℂ̅ 𝑥 ) = 𝑦 ) } |