Description: Definition of the divisibility relation (compare df-dvds ).
Since 0 is absorbing, |- ( A e. ( CCbar u. CChat ) -> ( A ||C 0 ) ) and |- ( ( 0 ||C A ) <-> A = 0 ) .
(Contributed by BJ, 28-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-divc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdivc | ||
| 1 | vx | ||
| 2 | vy | ||
| 3 | 1 | cv | |
| 4 | 2 | cv | |
| 5 | 3 4 | cop | |
| 6 | cccbar | ||
| 7 | 6 6 | cxp | |
| 8 | ccchat | ||
| 9 | 8 8 | cxp | |
| 10 | 7 9 | cun | |
| 11 | 5 10 | wcel | |
| 12 | vn | ||
| 13 | czzbar | ||
| 14 | czzhat | ||
| 15 | 13 14 | cun | |
| 16 | 12 | cv | |
| 17 | cmulc | ||
| 18 | 16 3 17 | co | |
| 19 | 18 4 | wceq | |
| 20 | 19 12 15 | wrex | |
| 21 | 11 20 | wa | |
| 22 | 21 1 2 | copab | |
| 23 | 0 22 | wceq |