Metamath Proof Explorer


Definition df-bj-gab

Description: Definition of generalized class abstractions: typically, x is a bound variable in A and ph and { A | x | ph } denotes "the class of A ( x ) 's such that ph ( x ) ". (Contributed by BJ, 4-Oct-2024)

Ref Expression
Assertion df-bj-gab
|- {{ A | x | ph }} = { y | E. x ( A = y /\ ph ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 vx
 |-  x
2 wph
 |-  ph
3 2 1 0 bj-cgab
 |-  {{ A | x | ph }}
4 vy
 |-  y
5 4 cv
 |-  y
6 0 5 wceq
 |-  A = y
7 6 2 wa
 |-  ( A = y /\ ph )
8 7 1 wex
 |-  E. x ( A = y /\ ph )
9 8 4 cab
 |-  { y | E. x ( A = y /\ ph ) }
10 3 9 wceq
 |-  {{ A | x | ph }} = { y | E. x ( A = y /\ ph ) }