Description: Definition of generalized class abstractions: typically, x is a bound variable in A and ph and { A | x | ph } denotes "the class of A ( x ) 's such that ph ( x ) ". (Contributed by BJ, 4-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-gab | |- {{ A | x | ph }} = { y | E. x ( A = y /\ ph ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cA | |- A | |
| 1 | vx | |- x | |
| 2 | wph | |- ph | |
| 3 | 2 1 0 | bj-cgab |  |-  {{ A | x | ph }} | 
| 4 | vy | |- y | |
| 5 | 4 | cv | |- y | 
| 6 | 0 5 | wceq | |- A = y | 
| 7 | 6 2 | wa | |- ( A = y /\ ph ) | 
| 8 | 7 1 | wex | |- E. x ( A = y /\ ph ) | 
| 9 | 8 4 | cab |  |-  { y | E. x ( A = y /\ ph ) } | 
| 10 | 3 9 | wceq |  |-  {{ A | x | ph }} = { y | E. x ( A = y /\ ph ) } |