Metamath Proof Explorer


Definition df-bj-gab

Description: Definition of generalized class abstractions: typically, x is a bound variable in A and ph and { A | x | ph } denotes "the class of A ( x ) 's such that ph ( x ) ". (Contributed by BJ, 4-Oct-2024)

Ref Expression
Assertion df-bj-gab { 𝐴𝑥𝜑 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 vx 𝑥
2 wph 𝜑
3 2 1 0 bj-cgab { 𝐴𝑥𝜑 }
4 vy 𝑦
5 4 cv 𝑦
6 0 5 wceq 𝐴 = 𝑦
7 6 2 wa ( 𝐴 = 𝑦𝜑 )
8 7 1 wex 𝑥 ( 𝐴 = 𝑦𝜑 )
9 8 4 cab { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) }
10 3 9 wceq { 𝐴𝑥𝜑 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) }