| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  =  𝑦  ↔  𝐵  =  𝑦 ) ) | 
						
							| 2 | 1 | biimpd | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  =  𝑦  →  𝐵  =  𝑦 ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  ( 𝐴  =  𝑦  →  𝐵  =  𝑦 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 5 | 3 4 | anim12d | ⊢ ( ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  ( ( 𝐴  =  𝑦  ∧  𝜑 )  →  ( 𝐵  =  𝑦  ∧  𝜓 ) ) ) | 
						
							| 6 | 5 | aleximi | ⊢ ( ∀ 𝑥 ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  ( ∃ 𝑥 ( 𝐴  =  𝑦  ∧  𝜑 )  →  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) ) ) | 
						
							| 7 | 6 | alrimiv | ⊢ ( ∀ 𝑥 ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  ∀ 𝑦 ( ∃ 𝑥 ( 𝐴  =  𝑦  ∧  𝜑 )  →  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) ) ) | 
						
							| 8 |  | ss2ab | ⊢ ( { 𝑦  ∣  ∃ 𝑥 ( 𝐴  =  𝑦  ∧  𝜑 ) }  ⊆  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) }  ↔  ∀ 𝑦 ( ∃ 𝑥 ( 𝐴  =  𝑦  ∧  𝜑 )  →  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ∀ 𝑥 ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  { 𝑦  ∣  ∃ 𝑥 ( 𝐴  =  𝑦  ∧  𝜑 ) }  ⊆  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) } ) | 
						
							| 10 |  | df-bj-gab | ⊢ { 𝐴  ∣  𝑥  ∣  𝜑 }  =  { 𝑦  ∣  ∃ 𝑥 ( 𝐴  =  𝑦  ∧  𝜑 ) } | 
						
							| 11 |  | df-bj-gab | ⊢ { 𝐵  ∣  𝑥  ∣  𝜓 }  =  { 𝑦  ∣  ∃ 𝑥 ( 𝐵  =  𝑦  ∧  𝜓 ) } | 
						
							| 12 | 9 10 11 | 3sstr4g | ⊢ ( ∀ 𝑥 ( 𝐴  =  𝐵  ∧  ( 𝜑  →  𝜓 ) )  →  { 𝐴  ∣  𝑥  ∣  𝜑 }  ⊆  { 𝐵  ∣  𝑥  ∣  𝜓 } ) |