Metamath Proof Explorer


Theorem bj-gabss

Description: Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Assertion bj-gabss ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → { 𝐴𝑥𝜑 } ⊆ { 𝐵𝑥𝜓 } )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝐴 = 𝐵 → ( 𝐴 = 𝑦𝐵 = 𝑦 ) )
2 1 biimpd ( 𝐴 = 𝐵 → ( 𝐴 = 𝑦𝐵 = 𝑦 ) )
3 2 adantr ( ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → ( 𝐴 = 𝑦𝐵 = 𝑦 ) )
4 simpr ( ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → ( 𝜑𝜓 ) )
5 3 4 anim12d ( ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → ( ( 𝐴 = 𝑦𝜑 ) → ( 𝐵 = 𝑦𝜓 ) ) )
6 5 aleximi ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → ( ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) → ∃ 𝑥 ( 𝐵 = 𝑦𝜓 ) ) )
7 6 alrimiv ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → ∀ 𝑦 ( ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) → ∃ 𝑥 ( 𝐵 = 𝑦𝜓 ) ) )
8 ss2ab ( { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) } ⊆ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦𝜓 ) } ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) → ∃ 𝑥 ( 𝐵 = 𝑦𝜓 ) ) )
9 7 8 sylibr ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) } ⊆ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦𝜓 ) } )
10 df-bj-gab { 𝐴𝑥𝜑 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦𝜑 ) }
11 df-bj-gab { 𝐵𝑥𝜓 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦𝜓 ) }
12 9 10 11 3sstr4g ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑𝜓 ) ) → { 𝐴𝑥𝜑 } ⊆ { 𝐵𝑥𝜓 } )