Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐵 = 𝑦 ) ) |
2 |
1
|
biimpd |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 = 𝑦 → 𝐵 = 𝑦 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → ( 𝐴 = 𝑦 → 𝐵 = 𝑦 ) ) |
4 |
|
simpr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
5 |
3 4
|
anim12d |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → ( ( 𝐴 = 𝑦 ∧ 𝜑 ) → ( 𝐵 = 𝑦 ∧ 𝜓 ) ) ) |
6 |
5
|
aleximi |
⊢ ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → ( ∃ 𝑥 ( 𝐴 = 𝑦 ∧ 𝜑 ) → ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ) ) |
7 |
6
|
alrimiv |
⊢ ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → ∀ 𝑦 ( ∃ 𝑥 ( 𝐴 = 𝑦 ∧ 𝜑 ) → ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ) ) |
8 |
|
ss2ab |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦 ∧ 𝜑 ) } ⊆ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝐴 = 𝑦 ∧ 𝜑 ) → ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) ) ) |
9 |
7 8
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦 ∧ 𝜑 ) } ⊆ { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } ) |
10 |
|
df-bj-gab |
⊢ { 𝐴 ∣ 𝑥 ∣ 𝜑 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐴 = 𝑦 ∧ 𝜑 ) } |
11 |
|
df-bj-gab |
⊢ { 𝐵 ∣ 𝑥 ∣ 𝜓 } = { 𝑦 ∣ ∃ 𝑥 ( 𝐵 = 𝑦 ∧ 𝜓 ) } |
12 |
9 10 11
|
3sstr4g |
⊢ ( ∀ 𝑥 ( 𝐴 = 𝐵 ∧ ( 𝜑 → 𝜓 ) ) → { 𝐴 ∣ 𝑥 ∣ 𝜑 } ⊆ { 𝐵 ∣ 𝑥 ∣ 𝜓 } ) |