| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( A = B -> ( A = y <-> B = y ) ) |
| 2 |
1
|
biimpd |
|- ( A = B -> ( A = y -> B = y ) ) |
| 3 |
2
|
adantr |
|- ( ( A = B /\ ( ph -> ps ) ) -> ( A = y -> B = y ) ) |
| 4 |
|
simpr |
|- ( ( A = B /\ ( ph -> ps ) ) -> ( ph -> ps ) ) |
| 5 |
3 4
|
anim12d |
|- ( ( A = B /\ ( ph -> ps ) ) -> ( ( A = y /\ ph ) -> ( B = y /\ ps ) ) ) |
| 6 |
5
|
aleximi |
|- ( A. x ( A = B /\ ( ph -> ps ) ) -> ( E. x ( A = y /\ ph ) -> E. x ( B = y /\ ps ) ) ) |
| 7 |
6
|
alrimiv |
|- ( A. x ( A = B /\ ( ph -> ps ) ) -> A. y ( E. x ( A = y /\ ph ) -> E. x ( B = y /\ ps ) ) ) |
| 8 |
|
ss2ab |
|- ( { y | E. x ( A = y /\ ph ) } C_ { y | E. x ( B = y /\ ps ) } <-> A. y ( E. x ( A = y /\ ph ) -> E. x ( B = y /\ ps ) ) ) |
| 9 |
7 8
|
sylibr |
|- ( A. x ( A = B /\ ( ph -> ps ) ) -> { y | E. x ( A = y /\ ph ) } C_ { y | E. x ( B = y /\ ps ) } ) |
| 10 |
|
df-bj-gab |
|- {{ A | x | ph }} = { y | E. x ( A = y /\ ph ) } |
| 11 |
|
df-bj-gab |
|- {{ B | x | ps }} = { y | E. x ( B = y /\ ps ) } |
| 12 |
9 10 11
|
3sstr4g |
|- ( A. x ( A = B /\ ( ph -> ps ) ) -> {{ A | x | ph }} C_ {{ B | x | ps }} ) |