Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Generalized class abstractions
bj-gabss
Next ⟩
bj-gabssd
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-gabss
Description:
Inclusion of generalized class abstractions.
(Contributed by
BJ
, 4-Oct-2024)
Ref
Expression
Assertion
bj-gabss
⊢
∀
x
A
=
B
∧
φ
→
ψ
→
A
|
x
|
φ
⊆
B
|
x
|
ψ
Proof
Step
Hyp
Ref
Expression
1
eqeq1
⊢
A
=
B
→
A
=
y
↔
B
=
y
2
1
biimpd
⊢
A
=
B
→
A
=
y
→
B
=
y
3
2
adantr
⊢
A
=
B
∧
φ
→
ψ
→
A
=
y
→
B
=
y
4
simpr
⊢
A
=
B
∧
φ
→
ψ
→
φ
→
ψ
5
3
4
anim12d
⊢
A
=
B
∧
φ
→
ψ
→
A
=
y
∧
φ
→
B
=
y
∧
ψ
6
5
aleximi
⊢
∀
x
A
=
B
∧
φ
→
ψ
→
∃
x
A
=
y
∧
φ
→
∃
x
B
=
y
∧
ψ
7
6
alrimiv
⊢
∀
x
A
=
B
∧
φ
→
ψ
→
∀
y
∃
x
A
=
y
∧
φ
→
∃
x
B
=
y
∧
ψ
8
ss2ab
⊢
y
|
∃
x
A
=
y
∧
φ
⊆
y
|
∃
x
B
=
y
∧
ψ
↔
∀
y
∃
x
A
=
y
∧
φ
→
∃
x
B
=
y
∧
ψ
9
7
8
sylibr
⊢
∀
x
A
=
B
∧
φ
→
ψ
→
y
|
∃
x
A
=
y
∧
φ
⊆
y
|
∃
x
B
=
y
∧
ψ
10
df-bj-gab
⊢
A
|
x
|
φ
=
y
|
∃
x
A
=
y
∧
φ
11
df-bj-gab
⊢
B
|
x
|
ψ
=
y
|
∃
x
B
=
y
∧
ψ
12
9
10
11
3sstr4g
⊢
∀
x
A
=
B
∧
φ
→
ψ
→
A
|
x
|
φ
⊆
B
|
x
|
ψ