Metamath Proof Explorer


Theorem bj-gabss

Description: Inclusion of generalized class abstractions. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Assertion bj-gabss x A = B φ ψ A | x | φ B | x | ψ

Proof

Step Hyp Ref Expression
1 eqeq1 A = B A = y B = y
2 1 biimpd A = B A = y B = y
3 2 adantr A = B φ ψ A = y B = y
4 simpr A = B φ ψ φ ψ
5 3 4 anim12d A = B φ ψ A = y φ B = y ψ
6 5 aleximi x A = B φ ψ x A = y φ x B = y ψ
7 6 alrimiv x A = B φ ψ y x A = y φ x B = y ψ
8 ss2ab y | x A = y φ y | x B = y ψ y x A = y φ x B = y ψ
9 7 8 sylibr x A = B φ ψ y | x A = y φ y | x B = y ψ
10 df-bj-gab A | x | φ = y | x A = y φ
11 df-bj-gab B | x | ψ = y | x B = y ψ
12 9 10 11 3sstr4g x A = B φ ψ A | x | φ B | x | ψ