Metamath Proof Explorer


Theorem bj-gabssd

Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabssd.nf φ x φ
bj-gabssd.c φ A = B
bj-gabssd.f φ ψ χ
Assertion bj-gabssd φ A | x | ψ B | x | χ

Proof

Step Hyp Ref Expression
1 bj-gabssd.nf φ x φ
2 bj-gabssd.c φ A = B
3 bj-gabssd.f φ ψ χ
4 2 3 jca φ A = B ψ χ
5 1 4 alrimih φ x A = B ψ χ
6 bj-gabss x A = B ψ χ A | x | ψ B | x | χ
7 5 6 syl φ A | x | ψ B | x | χ