Metamath Proof Explorer


Theorem bj-gabssd

Description: Inclusion of generalized class abstractions. Deduction form. (Contributed by BJ, 4-Oct-2024)

Ref Expression
Hypotheses bj-gabssd.nf φ x φ
bj-gabssd.c φ A = B
bj-gabssd.f φ ψ χ
Assertion bj-gabssd Could not format assertion : No typesetting found for |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) with typecode |-

Proof

Step Hyp Ref Expression
1 bj-gabssd.nf φ x φ
2 bj-gabssd.c φ A = B
3 bj-gabssd.f φ ψ χ
4 2 3 jca φ A = B ψ χ
5 1 4 alrimih φ x A = B ψ χ
6 bj-gabss Could not format ( A. x ( A = B /\ ( ps -> ch ) ) -> {{ A | x | ps }} C_ {{ B | x | ch }} ) : No typesetting found for |- ( A. x ( A = B /\ ( ps -> ch ) ) -> {{ A | x | ps }} C_ {{ B | x | ch }} ) with typecode |-
7 5 6 syl Could not format ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) : No typesetting found for |- ( ph -> {{ A | x | ps }} C_ {{ B | x | ch }} ) with typecode |-